
EXPERIENCES WITH THE ISOGEOMETRIC ANALYSIS
IN STRUCTURAL MECHANICS

D. Rypl, B. Patzák 1

Summary: The aim of this paper is to share with its readers the early experiences
of its authors related to the implementation, use, and performance of the isogeo-
metric analysis applied to two-dimensional linearly elastic problems. Isogeomet-
ric analysis has been recently introduced as a viable alternative to the standard,
polynomial-based finite element analysis. Although the isogeometric analysis ex-
hibits several interesting features and it has been shown that it can outperform the
classical finite element method in many aspects, its way to the practical engineering
is still at the beginning. Not only there are still many open issues that have to be
solved but also rather different methodology has to get into awareness of engineer-
ing community currently tied up mostly to the finite element method.

1. Introduction

The concept of isogeometric analysis (IGA) (Hughes et al., 2005; Bazilevs et al., 2006; Cot-
trell et al., 2006, 2007, 2009), initially motivated by the gap between the computer aided de-
sign (CAD) and the finite element method (FEM), builds upon the concept of isoparametric
elements, in which the same shape functions are used to approximate the geometry and the
solution on a single finite element. The IGA, as its name suggests, goes one step further as it
employs the same functions for the description of the geometry and for the approximation of
the solution space on that geometry. This implies that the isogeometric mesh (discretization for
computational purposes) of the CAD geometry encapsulates the exact geometry no matter how
coarse the mesh actually is. As a consequence, the need to have a separate representation for the
original CAD model and another one for the actual computational geometry is completely elim-
inated. The preprocessing is therefore reduced to the construction (i) of the so-called analysis
suitable geometry (ASG) by fixing various ambiguities (gaps and overlaps) and removing inap-
propriate details (small features) from the initial CAD geometry and (ii) of the computational
isogeometric mesh which is just the tessellation of the underlying parametric space of the CAD
geometry along each of its directions and has nothing common with the (often) costly finite
element mesh generation. Note that the isogeometric mesh can be refined to any level without
altering the geometry in any way and without accessing the CAD geometry. This makes the iso-
geometric analysis perfectly suitable for the application to adaptively solved problems because
the missing link between the finite element analysis (FEA) and CAD as well as the interaction
with external mesh generation software is completely obviated.

1 Doc. Dr. Ing. Daniel Rypl, Doc. Dr. Ing. Bǒrek Patźak, Czech Technical University in Prague, Faculty
of Civil Engineering, Department of Mechanics, Thákurova 7, 166 29 Prague 6, tel. +420 224 354 369, e-mail
drypl@fsv.cvut.cz

International Conference
ENGINEERING MECHANICS 2010
Svratka, Czech Republic, May 10 – 13, 2010

This paper presents how the IGA approach may be implemented into an existing object ori-
ented finite element environment. The concept of the IGA is briefly recalled in Section 2. The
actual structure and design of class hierarchy for the IGA is described in Section 3. The per-
formance of the developed implementations is demonstrated on a simple example in Section 4.
And finally, the paper ends by summarizing the experiences with the implementation and per-
formance issues of the IGA in Section 5.

2. Isogeometric Analysis

The isogeometric approach has been originally developed for the non-uniform rational B-
splines (NURBS)2 (Rogers, 2000; Piegl and Tiller, 1997; Farin, 1995) patches which are the
basic building blocks in most CAD systems and which allow precise representation of a wide
class of objects. A NURBS patch is described by a set of control points (topologically forming
a regular grid of the dimension corresponding to the spacial dimension of the underlying para-
metric space of the NURBS patch), their weights, degree of the B-spline basis functions in each
direction of the parametric space, and a so-called knot vector represented by a nondecreasing
sequence of parametric coordinates for each direction defining the support for individual B-
spline basis functions (in other words parameterization) in that particular direction. The data at
the control points (for example the coordinates when the geometry is concerned, or the primary
unknowns when solution space is handled) are interpolated over the NURBS patch using the
shape functions which are defined as weighted normalized tensor product of univariate B-spline
basis functions in each of the parametric directions. The univariate B-spline basis functions for
a particular parametric direction are defined recursively for degreep > 0 as

Ni,p(t) =
t− ti

ti+p − ti
Ni,p−1(t) +

ti+p+1 − t

ti+p+1 − ti+1

Ni+1,p−1(t), (1)

in which the piecewise constant basis functions of zero degree are defined by

Ni,0(t) =

{
1 if ti ≤ t < ti+1,
0 otherwise,

(2)

and whereti (for i = 1, 2, . . . , n + p + 1) stands for entries of the knot vector andn denotes
the number of control points in the given direction. For details concerning the definition of the
B-spline basis functions and their properties the reader is referred to Piegl and Tiller (1997).

An example of a quadratic (p = 2) NURBS curve (i.e. one-dimensional NURBS patch)
defined by six (n = 6) control points and their weights (wi) and parameterized over the knot
vector{0, 0, 0, 1, 3, 3, 4, 4, 4} is depicted in Figure 1a. The colors of individual parts of the curve
correspond to the individual non-zero knot spans (red:0 − 1, green:1 − 3, blue: 3 − 4). The
B-spline basis functions used to construct the NURBS shape functionsRi (for i = 1, 2, . . . , n)

Ri(t) =
Ni(t)wi∑n

j=1 Nj(t)wj

(3)

are shown in Figure 1b over the entire span of the knot vector. The curve interpolates those
control points for which the corresponding basis function attains value one (knot value at which

2 Nowadays, the research is rather focused on the use of T-splines patches that are a powerful generalization of
NURBS patches (Sederberg et al., 2003, 2004) capable to overcome many problems related to using pure NURBS
representation.

1 (1) 2 (1)

3 (4) 4 (1)

5 (2)

6 (1) 0,0,0 1 3,3 4,4,4
0

1

N1
N2

N3

N4

N5

N6

a) b)

Figure 1: Quadratic NURBS curve: (a) control polygon in black; numbers of individual con-
trol points and their weights (in parenthesis) in color corresponding to associated basis func-
tion; segments of the curve in red/green/blue corresponding to non-zero knot spans 0-1/1-3/3-4,
(b) B-spline basis functions corresponding to individual control points plotted over the entire
span of the knot vector{0, 0, 0, 1, 3, 3, 4, 4, 4}.

this occurs defines the parameter corresponding to that control point), the rest of the control
polygon is only approximated. The curve isC1 continuous everywhere except for the point
corresponding to parameter 3 at which the continuity has been weakened by repeating that
particular value in the knot vector twice.3 Note theC0 continuity of the B-spline basis function
N4 in Figure 1b at parameter 3. The coincidence of the interface between the first (red) and
the second (green) knot span on the curve with the intersection of the curve with its control
polygon is a rule for quadratic curve only. Note that the red part of the curve (corresponding
to the first knot span of size 1) is significantly larger than the green part (corresponding to the
second knot span of size 2) despite the fact that the control polygon between control points 1
and 4 is symmetric with respect to the middle of its second segment. This is the consequence of
the weight 4 applied at the third control point which results in the attraction of the curve toward
the third control point.

The computational isogeometric mesh within the single NURBS patch is formed by parti-
tioning the parametric space to the non-zero knot spans in each direction. TheC0 continuity
of the geometry formed by more NURBS patches is attained either in strong sense by using
the same NURBS representation along the interface on both patches sharing that interface or
by using different NURBS representations along the interface accompanied by appropriate con-
straints applied to control points, or in the weak sense by using the discontinuous Galerkin
formulation with different NURBS representations along the interface. Note that while higher
order continuity could be achieved for the geometry representation across adjacent patches,
generally onlyC0 continuity can be achieved for the solution. In the context of structural me-
chanics, the NURBS shape functions are complete with respect to affine transformations (Piegl
and Tiller, 1997), which means that all rigid body motions and constant strain states are repre-
sented exactly. This implies that the convergence to the exact solution is guaranteed.

The IGA has many features in common with the FEM (the basis functions form a partition
of unity, they have the compact support, they exhibit affine invariance, numerical integration is
employed, Neumann boundary conditions are satisfied naturally etc.) but there are some more

3 Generally, multiplicityk ≤ p of a particular inner knot decreases the continuity at that knot toCp−k.

Table 1: Differences between the IGA and FEA.

Feature Finite element analysis Isogeometric analysis

geometry not available represented by control points

mesh defined by nodal points defined by knot spans

mesh approximates geometry represents exact geometry

solution defined by nodal variablesdefined by control variables

basis formed by polynomials formed by NURBS functions

basis interpolates nodal points
and variables

does not generally interpolate
control points and variables

basis satisfies Kronecker delta
property

does not generally satisfy
Kronecker delta property

basis support over patch of elements
sharing a common node

over a rectangular array of
knot spans size of which depends
on continuity of the basis

Dirichlet BC straightforward approximated within NURBS space

or less significant differences which are summarized in Table 1. Note, that in the traditional
FEM, the individual nodes are part of the computational domain, and corresponding degrees
of freedom (DOFs) have the direct physical meaning (e.g. displacement in particular direction
at the node), which is the direct consequence of Kronecker delta property of the finite element
shape functions. Note that in the context of the IGA, the control points of NURBS patches are
generally not part of the physical computational domain. This results in lost of clear physical
meaning of individual DOFs. Moreover, the physical meaning of DOF in the IGA is made
further intricate by the fact that generally not only a single shape function attains non-zero
value for the particular node (i.e. physical unknown at such a point has to be evaluated as sum
of contributions from nodes with non-zero shape functions at that point). There exist analogues
of h-, p-, and hp-refinement strategies in the IGA based on knot insertion and degree elevation
algorithms. However, the isogeometric concept offers also a higher order methodology, known
as k-refinement (Hughes et al. (2005)), which has no analogue in the standard FEA and which
is based on the fact that knot insertion and degree elevation algorithms do not commute. Using
the k-refinement, it is possible to increase the continuity across element boundaries (within
a single NURBS patch) while limiting the growth of the number of control variables. The
various refinement strategies available in the IGA are nicely summarized in Cottrell et al. (2007)
using the hpk-space.

3. Design and Implementation of IGA Concept

One of the important issues related to a faster expansion of IGA into research as well as engi-
neering community is the implementation of the isogeometric concept without the necessity to
start the coding from scratch. In this section, an approach based on the integration of the IGA

GaussPoint gaussPointArray

IntArray

GaussIntegrationRule

iRule gaussPointArray integrationRulesArray elem

Element

IntegrationRule

IGA_IntegrationElement
knotSpan

Figure 2: Collaboration diagram forIGA IntegrationElementclass.

within an object oriented finite element environment OOFEM (Patzák, 2010) is presented. The
emphasis is given on proper design of the hierarchy of classes, their attributes and methods in
order to reuse most of the existing functionality of the finite element code while still preserving
object oriented features, such as modularity, extensibility, maintainability, and robustness, of
the whole environment.

As has been already mentioned, within the IGA terminology the individual isogeometric el-
ements on a particular patch are formed by rectangular parts of the underlying parametric space
of the patch corresponding to the non-zero knot spans in each parametric direction. However
such a concept is generally not in correspondence with the arrangement in standard finite el-
ement codes. In the proposed approach, the whole patch is treated as a single computational
element. This is quite natural because in a general case, DOFs at all control points of a single
patch may interact with each other (analogy to FEA where DOFs at all nodes of the single el-
ement interact with each other). Thus in terms of the object oriented terminology, each patch
is represented by instance of class derived from theIGAElementclass which is in turn derived
from baseElementclass which is the parent class for finite elements maintaining list of nodes,
boundary conditions (loads), integration rules, keeping links to its interpolation and associated
material model and providing general services for accessing its attributes, methods for giving
back its code numbers, and abstract services for the evaluation of characteristic components
(e.g. stiffness matrix, load vector, etc.).

One of the fundamental issues, that has to be addressed at the computational element level,
is the integration. This is important especially for the (very common) case when the support
of basis functions is limited only to several consecutive knot spans. In such a case it is highly
desirable to limit the integration only to relevant knot spans where the basis functions attain
non-zero value. This is achieved by the application of the concept of multiple integration rules
per element (analogy to the selective integration in the FEA). In this approach, an integration
rule is setuped for each element (thereafter called integration element) of the isogeometric mesh
(on the computational element) corresponding to non-zero knot spans in each parametric direc-
tion. These integration rules are represented by instances ofIGA IntegrationElementclass (see
Figure 2), which is derived from classGaussIntegrationRule, which is in turn inherited from
baseIntegrationRuleclass, grouping together individual integration points of a particular inte-
gration rule and providing general services for their setup. The reason for creating a new class
(IGA IntegrationElement) is to introduce the new attributeknotSpan, in which the correspond-
ing knot spans are stored and which are used in the interpolation class to evaluate non-zero

IntegrationRule

Element

elem integrationRulesArray

GaussPoint

IGAElement

iRule gaussPointArray

gaussPointArray NURBSPlaneStressElement

PlaneStressStructural
ElementEvaluator NURBSInterpolation

interpolation

StructuralElementEvaluator BSplineInterpolation

Figure 3: Collaboration diagram forNURBSPlaneStressElementclass.

basis functions and their derivatives at a given integration point. Note that the knot spans can
generally be determined for each integration point on the fly whenever it is needed, but this may
introduce some overhead especially for high order integration schemes over patches with large
(in terms of number of entries) knot vectors. The integration over the computational element
then consists of an outer loop over individual integration elements and an inner loop over the
individual integration points setuped and stored on the integration element.

Since the NURBS patch with control points described by coordinatesx, y, z and weightw
can be represented as the projection of non-rational B-spline patch with control points described
by homogeneous coordinatesxw, yw, zw, w, it is natural to implement the interpolation within
the isogeometric concept for B-splines at first and then to extend it to NURBS. The B-spline
interpolation on IGA element is encapsulated intoBSplineInterpolationclass derived from base
FEInterpolationclass which defines the abstract interface in terms of services that evaluate
shape functions, their derivatives, jacobian matrix, etc. at given point. Each element (no matter
whether it is a standard finite element or IGA element) has to set up its interpolation and to
provide access to it. This is enforced by generalElementinterface which requires to define the
method for accessing element interpolation. The abstractFEInterpolationclass interface is es-
sential, as it allows to implement problem specific element methods (for example evaluation of
the strain-displacement matrix) already at the top level. The attributes ofBSplineInterpolation

Table 2: Symbolic code for the evaluation of the stiffness matrix (keyword “this” indicates that
the called method is provided by the class itself).

StructuralElementEvaluator::computeStiffnessMatrix() {
loop over all integration rules of the element {

loop over all Gauss points of the IntegrationRule {
B = this->computeStrainDisplacementMatrix(gp);
D = this->computeConstitutiveMatrix(gp);
dV = this->computeVolumeAround(gp);
stiffnessMatrix->add(product of BˆT_D_B_dV);

}
}

}

Table 3: Symbolic code for the evaluation of the strain-displacement matrix.

PlaneStressStructuralElementEvaluator::
computeStrainDisplacementMatrix(IntegrationPoint gp) {

FEInterpolation interp = gp->giveElement()->giveInterpolation();
interp->evalShapeFunctDerivatives (der, gp);

answer.resize(3, nnode*2); // 2 DOFs per each node
answer.zero();

for i=1:nnode{
// normal strain in x direction
answer.at(1, i*2-1) = der.at(i, 1); // dN(i)/dx
// normal strain in y direction
answer.at(2, i*2) = der.at(i, 2); // dN(i)/dy
// shear strain
answer.at(3, i*2-1) = der.at(i, 2); // dN(i)/dy
answer.at(3, i*2) = der.at(i, 1); // dN(i)/dx

}
}

class describe the individual components of the B-spline interpolation, namely the knot vector,
degree and number of control points in each parametric direction. The efficient implementation
of BSplineInterpolationclass should profit from the locality of individual interpolation func-
tions which have limited support over several consecutive knot spans. Therefore methods de-
clared byFEInterpolationclass evaluating values of interpolation functions or their derivatives
return the values only for those functions that are nonzero in actual knot span. This enables to
compute characteristic element contributions on a knot span basis (via integration elements) effi-
ciently. For each integration element, the contributions are computed only for generally nonzero
shape functions and then they are localized into the computational element contribution. The
mask of nonzero shape functions for individual knot spans can be evaluated usinggiveKnotBa-
sisFuncMaskservice declared byFEInterpolationand really provided byBSplineInterpolation.
Once the B-spline interpolation is available, the NURBS interpolation is established in terms of
a new classNURBSInterpolationinherited fromBSplineInterpolationclass. ClassNURBSIn-
terpolationoverloads only few methods of its parentBSplineInterpolationclass namely those
which require the projection (conversion from the space of homogeneous coordinates to the
space of real coordinates), such as the evaluation of the shape functions, their derivatives and
jacobian matrix. Note that no new attributes need to be introduced toNURBSInterpolationclass
because the weights needed for the projection are part of the geometry of the NURBS patch.

Specific IGA computational elements are derived from theIGAElementclass which delivers
the generic element functionality (via the inheritance from the baseElementclass) and from
one or more classes implementing problem-specific functionality (see Figure 3). The purpose
of IGAElementclass is to provide general method for the initialization of integration rules on
individual integration elements (represented byIGA IntegrationElementclass). In the present
approach,StructuralElementEvaluatorclass is an abstract base class that defines the interface
for structural analysis which includes methods for the evaluation of mass and stiffness matrices,

Geometry

StructuralElementEvaluator

PlaneStressStructuralElementEvaluator

FEMComponent ElementGeometry

Element

IGAElement

BSplinePlaneStressElement NURBSPlaneStressElement

Figure 4: Inheritance diagram forBSplinePlaneStressElementandNURBSPlaneStressElement
classes.

load vectors, etc. Some of the methods are already implemented at this level, such as stiffness
matrix evaluation, based on declared abstract services (evaluation of strain-displacement matrix,
etc.), which have to be implemented by derived classes. The example of the evaluation of the
element stiffness matrix, which can be used by both classical and isogeometric computational
elements, is presented in Table 2 using symbolic code. In the structural analysis context, classes
derived fromStructuralElementEvaluatorimplement desired functionality for specific types
of structural analyzes (plane-stress, plane-strain, full 3D, etc). Provided that the computational
element defines its interpolation (and this is enforced by generalElementinterface) it is possible
to evaluate remaining abstract methods fromStructuralElementEvaluatorinterface (without the
need to implement them on the derived specific elements) as it is illustrated in Table 3 on
the example of the evaluation of the strain-displacement matrix for the case of plane stress
analysis. This is the direct consequence of the design based on decoupled representation of
element interpolation and problem specific evaluators, which enables to define problem specific
methods only once for various elements with different geometry and interpolation and allows
straightforward implementation of elements for multi-physics simulations. Thus, when a new
computational element is to be defined, it only has to create its own interpolation and it should be
derived fromElementclass (in case of classical finite element) orIGAElementclass (in case of
isogeometric element), which delivers the general basic element functionality and initialization
methods, and from one or more evaluators, implementing analysis-specific functionality (see
Figure 4).

4. Numerical Example

The functionality of the developed implementation and the performance of the IGA has been
verified on a simple two-dimensional example of a mechanical part in the plane stress regime.
Geometry with dimensions, boundary conditions, and relevant parameters of the problem is
shown in Figure 5a. The computational domain is exactly modelled by a single(!) NURBS

2

3

v = v

E = 210 GPa
 = 0.3
t = 0.05 cm
v = −0.1 cm

ν
1

2

2 2 4

3

3

2 u = v = 0

[cm]

y, v

x, u

v

u

geometry contour
control polygon
corner control point with w=1
control point with w=1
control point with w=cos45

a) b)

c) d)

e) f)

Figure 5: Mechanical part: (a) geometry, boundary conditions, and parameters, (b) initial repre-
sentation by single NURBS patch, (c) refined representation by single NURBS patch, (d) IGA
- contour plot of shear strain on refined discretization, (e) FEA - contour plot of shear strain on
coarse mesh, (f) FEA - contour plot of shear strain on fine mesh.

patch quadratic inu-direction and linear inv-direction. The position of individual control points
of the patch (together 25× 2), their weights and orientation of parametric directions are indi-
cated in Figure 5b. The knot vector describing the parameterization of the patch inu-direction
is defined as{0, 0, 0, 1, 1, 2, 2, . . . , 10, 10, 11, 11, 12, 12, 12}, the knot vector forv-direction as
{0, 0, 1, 1}. Multiplicity 2 of all inner knots of knot vector inu-directions reveals that the patch
is composed inu-direction of 12 individual subpatches withC0 continuity at the joints. From
Figure 5b it is also apparent that the NURBS patch is connected to itself along the 3 legs of the
control polygon which are emanating from the corner control point inside of the domain. Again,
these connections are ofC0 continuity only. The discretization resulting from this initial repre-
sentation of the patch is too coarse, however. It has been therefore refined using the concept of
k-refinement. The degree of the patch has been firstly elevated by one in each of the parametric
directions and then the knot space was uniformly refined to have 48 non-zero knot spans inu-
direction and 4 non-zero knot spans inv-direction. This has resulted in a new representation of
the NURBS patch with cubic degree and 73 control points inu-direction and quadratic degree
and 6 control points inv-direction. The corresponding isogeometric mesh containing 192 inte-
gration elements and 419 independent control points4 is displayed in Figure 5c, in which the red
lines indicate theC0 continuity joints (inside the patch and where the patch is connected with
itself). The contour plot of shear deformation computed on the refined discretization is shown
in Figure 5d. The deformation is drawn over individual integration elements by subdividing
each into 16 subelements (four in each direction) and by using bilinear interpolation on each of
them. Note that the figure displays raw data without any postprocessing (smoothing). This is
apparent from discontinuities (observable by detailed inspection) of the plotted field along the
joints ofC0 continuity (marked in Figure 5c).

A comparative analysis was performed by the standard FEM using linear isoparametric tri-
angular elements. Two uniform discretizations have been considered - a coarse one with 426
nodes and 725 elements (having similar number of DOFs as the discretization used for the IGA)
and a fine one with 1714 nodes and 4882 elements (taken as the reference discretization). The
profiles of the shear deformation computed by the FEA are drawn in Figures 5e and 5f for the
coarse and fine discretization, respectively. Note that these figures display the smoothed values
of the shear strain.

The examination of contour plots in Figure 5, reveals that the response obtained by the IGA
tends to capture slightly better (despite the discontinuities along the joints) the profile (including
the concentrations) of the shear strain, compared to the FEA on the coarse mesh having similar
number of DOFs, which is the consequence of the 2nd (inu-direction) and 1st (inv-direction)
order continuity of the basis functions inside of individual subpatches compared to the zero
order continuity between the finite elements. This effect would be even more pronounced if the
degree of the patch interpolation would be further raised.

5. Conclusions

The present work describes an implementation of the IGA concept into an existing object ori-
ented finite element code (Patzák, 2010). The emphasis has been given on the proper design of
the hierarchy of classes, their attributes and methods in order to reuse most of the functionality
of the finite element code while still preserving modularity and easy extensibility of the whole
environment. The experience reveals that the amount of the added code is rather limited (mostly

4 Note that control points along the legs of the control polygon where the surface is connected to itself are coupled.

related to handling B-spline and NURBS basis functions). Note, however, that this conclusion
is tightly adherent to the adopted OOFEM package and may not be generally applicable to
other software. It is also worth to mention that the less transparent physical meaning of primary
variables in the IGA may complicate debugging of the code.

From the point of view of utilization and performance of the IGA, the analyst is facing several
challenges. The first one is related to the order of numerical quadrature that has to be applied to
integrate rational terms possibly of high degree. While too low order causes underintegration
and consequently significant degradation of the obtained solution, too high order is computa-
tionally inefficient. There is now initiated a new research effort (Hughes et al., 2010) focusing
on the development of integration schemes that would be more suitable for application within
the IGA compared to the traditionally used Gaussian numerical integration. Another issue is
related to the enrichment of the discretization in the IGA. While the degree elevation in the IGA
is quite similar to the p-refinement in the FEA (with the only difference that with increasing
degree also the support of the basis functions increases), the knot refinement in the IGA is far
less intuitive than the h-refinement in the FEA. The problem is that the knots are inserted in
the parametric space and that the position of control points is related to physical computational
domain via the mapping (in other words, control point may be far from the actual location on
the real geometry that is mostly influenced by it). Thus without a reasonable knowledge of the
mapping between the parametric space and the real space of the patch it may easily happen that
the refinement is fairly not as efficient as expected. Also application of boundary conditions
in the IGA may be more problematic compared to classical FEM. Homogeneous or constant
Dirichlet boundary condition can be easily prescribed either for the whole side of the patch or
for its part independent from the rest of that side. Application of variable Dirichlet boundary
condition is generally only approximate within the available NURBS space. For the applica-
tion of point load or point support it is necessary to solve the point inversion problem (to find
parametric coordinates corresponding to that point), which cannot be done in a closed form for
degree larger than 4 and which may be non-trivial even for cubic or quartic degree. The great
advantage of the IGA analysis over the FEA is the simplicity with which higher continuity of
the solution inside of the patch (it is just accomplished by elevating the degree of the patch) can
be achieved. This is also the reason why the isogeometric solution may (and it usually does)
outperform the finite element solution for the same number of unknowns. On the other hand,
with increasing degree the computational costs of the IGA are also increasing. This is due to the
more demanding evaluation of basis functions and their derivatives, due to the need to enrich
the integration scheme and, if an elimination based equation solver is adopted, also due to the
larger bandwidth of the the system of equations, which is the consequence of the increase of
the support of basis functions over more knot spans. However, the elevated degree does not im-
prove the continuity of the solution of the IGA between patches (and also inside the patch along
joints of independent subpatches), thus there is still need to postprocess the solution (at least
in the problematic regions) to get smooth contours of quantities depending on the gradient of
the primary unknowns. Moreover, higher continuity of the solution may propagate undesirable
phenomena (for example due to singularities) deeper in the computational domain (Cottrell et
al., 2007). In such a case, it is desirable to decrease the degree locally. If the degree has been
previously raised, then it is no problem to decrease it again. In other cases, the degree reduc-
tion could lead to change of geometry (of course within a given tolerance, otherwise the degree
reduction is rejected). Another nice feature of the IGA (however significant mostly for CFD)
is its capability to reproduce sharp fronts in the solution without the occurrence of undesirable
oscillations known as Gibbs phenomenon (Hughes et al., 2005).

Clearly, despite few not so favourable aspects of the IGA mentioned above, the IGA is def-
initely worth consideration as a viable alternative to the FEM because its gains, especially the
elimination of the finite element mesh generation and the fact that the exact geometry is handled
no matter how coarse the discretization is, are significant.

6. Acknowledgment

This work was supported by the Grant Agency of the Czech Republic - Project No. 103/09/2009.
Its financial assistance is gratefully acknowledged.

7. References

Hughes T.J.R. & Cottrell J.A. & Bazilevs Y. 2005: Isogeometric Analysis: CAD, Finite Ele-
ments, NURBS, Exact Geometry and Mesh Refinement,Computer Methods in Applied Me-
chanics and Engineering194, 4135–4195.

Bazilevs Y. & Beirao de Veiga L. & Cottrell J.A. & Hughes T.J.R. & Sangalli G. 2006: Isogeo-
metric Analysis: Approximation, Stability and Error Estimates for h-refined Meshes,Mathe-
matical Models and Methods in Applied Sciences16, 1031–1090.

Cottrell J.A. & Reali A. & Bazilevs Y. & Hughes T.J.R. 2006: Isogeometric Analysis of Struc-
tural Vibrations,Computer Methods in Applied Mechanics and Engineering, 195, 5257–
5296.

Cottrell J.A. & Hughes T.J.R. & Reali A. 2007: Studies of Refinement and Continuity in Iso-
geometric Structural Analysis,Computer Methods in Applied Mechanics and Engineering,
196, 4160–4183.

Cottrell J.A. & Hughes T.J.R. & Bazilevs Y. 2009:Isogeometric Analysis: Toward Integration
of CAD and FEA, John Wiley & Sons.

Hughes T.J.R. & Reali A. & Sangalli G. 2010: Efficient Quadrature for NURBS-based Isogeo-
metric Analysis,Computer Methods in Applied Mechanics and Engineering199, 301–313.

Sederberg T.W. & Zheng J. & Bakenov A. & Nasri A. 2003: T-splines and T-NURCCs,ACM
Transactions on Graphics (SIGGRAPH 2003), 22(3), 477–484.

Sederberg T.W. & Gardon D. & Finnigan G. & North N. & Zheng J. & Lyche T. 2004: T-spline
Simplification and Local Refinement,ACM Transactions on Graphics (SIGGRAPH 2004),
23(3), 276–283.

Rogers D.F. 2000:An Introduction to NURBS: With Historical Perspective, Morgan Kaufmann.

Piegl L. & Tiller W. 1997:The NURBS Book, Springer-Verlag.

Farin G.E. 1995:NURBS Curves and Surfaces: From Projective Geometry to Practical Use,
A.K. Peters.

Patźak B. 2010:OOFEM project home page, http://www.oofem.org.

