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Summary: Authors introduced a new method of processing flow visualisation im-
ages, aiming at identification of instability structures. In principle, the method 
utilises the structures' coherence. In two digital images, recorded at slightly dif-
ferent instants of time, the pixel pairs from the same position in the images are in-
terrogated one by one. In each, vectors of the recorded quantity values are formed 
from n x n pixels in immediate neighbourhood. The correlation coefficient is then 
computed for the vector pair. High positive values of the coefficient indicate ab-
sence of change whereas values near zero indicate chaotic changes. Of interest 
are negative values, which indicate a coherent motion.    

 

1. Introduction 
In many turbulent fluid flows, coherent structures are generated due to inherent hydrodynamic 
instability. Sometimes the structures may even have decisive influence on the processes tak-
ing place in the flow: e.g., in non-isothermal impinging jets the heat transfer is strongly de-
pendent on the presence and character of the vortical motions developing from the instabili-
ties. In some cases, such as in seeded jets at intermediate Reynolds numbers, the structures are 
well recognisable directly, by visual observation. Usually, a sophisticated image processing is 
necessary to identify them.   

Apart from the relatively minor problem of the structure moving with the flow, away 
from a particular field of investigation —  the main difficulty in experimental investigations 
of the vortical structures is their irregularity. There are two sources of the irregular behaviour:  

a) stochastic character of turbulence which is superimposed - and into which the structures 
gradually decay, and 

b)  non-deterministic variations in the timing of structure formation.  

 The basic problem in experimental investigations of the structures is the “degree of 
freedom gap”. The complex-shaped, convoluted and fast varying 3D objects are to be recon-
structed from data acquired as 1D or 2D arrays. Classical measurements made point-wise by 
probes traversed to acquire a 1D data array are nowadays mostly supplanted by collecting the 
data optically in 2D – almost always in a plane, typically defined by a laser light sheet. Either 
simple visualisation or more sophisticated PIV methods (generating, in addition, also velocity 
information) are applied at a particular instant of time. Were the investigated 3D objects 
steady, reconstruction from 2D data might be done by tomographic methods (Kak and Slaney 
2001) – repeating the 2D data collection at different plenes. However, reconstruction of fast 
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changing 3D instability structures from 2D information –  even if shifted sequentially either 
in time or in the direction of the third co-ordinate to cover 3D space, still presents a consider-
able challenge because both shifts cannot be made simultaneously (cf. Hesselink, Helman and 
Ning 1992). As a result, in the very principle such 3D reconstructions cannot be perfect. 
 
2.  Processing visualisation images 
 Identifying coherent motions in experimental data sets is done by processing the 2D 
data sets. Currently the most popular approach is decomposition of the flowfield into a “spec-
trum” of superimposed components of increasing spatial complexity. It is expected that the 
essential features of the flow are revealed by the principal first-order component (or at least a 
few components of the lowest order). A typical representative of this approach is  SVD, sin-
gular value decomposition, with its two special cases, BOD and POD. The former (bi-
orthogonal decomposition, also known as the method of empirical orthogonal functions) is 
practically suitable for reconstructing spatial features of laminar flows, because of the re-
quirement of the data correlated in time. The latter – proper orthogonal decomposition (Bui-
Thanh, Damodaran, and Willcox,  2004), also known (in other contexts, mainly in comparing 
two time series with some chaotic component) as Karhunen–Loéve expansion, Hotelling 
transform, principal component analysis, or method of empirical eigenfunctions. Though in-
vented as long ago as 1901, only much later, in 1967, Lumley proposed POD as a tool for 
identification of dominant eddies in turbulence (Holmes et al. 1997, Chatterjee 2000). It is 
known in several alternatives and acquired recently considerable popularity because the soft-
ware for its use is nowadays commercially available. It has been applied by a number of re-
searchers to wide range of fluid flows — with varying degrees of success. Common failure 
often encountered is the energy content (evaluated from the velocity data) of the principal 
component not being significantly larger than that of higher-order eddies. This makes ques-
tionable the assumption of dominance of the low-order features.  Also questionable are other 
fundamental assumptions on which the decomposition methods are based — e.g., the assump-
tion of linearity which is basic for the idea of superpositions, the Gaussian character, the as-
sumed importance of large variances, or the very basic feature of the orthogonality. From the 
point of view of detecting the instability structures, it may be questionable whether they are 
incorporated into the lowest-order components of the “spectrum”.  The limitation of  SVD 
variants for the present purpose of evaluation of flow visualisation images is – besides the 
prohibitive cost of commercial packages - their current practical implementations oriented 
exclusively to analysing PIV data with velocity information. 

 
3.  Correlation coefficient 
 Present authors performed experimental investigations of typical flows containing the 
coherent structures (such as impinging jets – Tesař et al., 2008, Tesař and Něnička 2009a, 
2009b, Tesař, Něnička, Šonský 2009), using flow visualisation in 2D light-sheet planes. The 
flows were seeded by micron-sized droplets — formed by water vapour condensation — into 
one of two mixed component flows. For detection and identification of the instability struc-
tures an original approach was used, which is the subject of the present paper. In proposing 
the new method, it was not attempted to supplant SVD or its POD variants, but mainly to 
offer an alternative having the advantage of not needing information about velocity and using 
only – much cheaper to obtain - flow visualisation data.  Even more importantly, the method, 
being based on a wholly different idea, produces results of different character that may bring 
into forefront an information not immediately accessible in what is produced by the current 
commercial packages. Authors use their procedure in association with several variants of pic-



torial presentation of the results (such as alternative false colouring, posterisation or apodisa-
tion – and also evaluation of various averages). The present discussion, however, concentrates 
only on the central idea of extracting the coherent features present in the flowfield. 

In principle, the detection of the structures in the new method is based on evaluating 
correlation between images obtained at different temporal phases of the vortex formation pe-
riod – either between a pair of images recorded at a different instant of time or between an 
image and an average of images acquired in the same phase of a periodic process. The insta-
bility structures are identified due to their higher degree of coherence compared with the sur-
rounding turbulence. If desired, by adjusting the scale of the detection, it is also possible to 
identify the turbulent eddies as long as they retain, foe a certain interval of time, their distinct 
character. 

The basis of the method is computation of the correlation coefficient R between two 
vectors,  and , defined as 

           ...(1) 
(where the product  , in the numerator is the scalar vector product). The elements of  the 
vectors,  and  are data values recorded from the pair of correlated images. The idea of 
evaluating the correlation coefficient, as a measure of relationship between two multi-valued 
variables, was developed by Pearson (1986) from a similar but slightly different idea 
introduced by F. Galton in the 1880s. In practical realisations, computation of eq. (1) is done 
using some of the procedures available in many programming language procedure libraries.  

           
Figure 1  Two examples of the correlation coefficient R  between two data vectors x  and y, inter-
preted as the measure of the scatter in their linear dependence  . 

 

 The most apparent way how to present a dependence  between two multi-
valued variables is, of course, to plot the Cartesian diagram - as it is done in the two examples 
presented in Fig. 1. The value of the correlation coefficient is a measure of the scatter of the 
linear dependence between the two data vectors: the higher is the value R the better is the fit by the 
straight trend line – as demonstrated in the top part of Fig. 2. Note that the magnitude of the 
correlation coefficient is dependent neither on the slope or on the intercept values nor is it 
influenced by any non-linear relation between the two data sets. The latter means, in other 
words, that even if the dependence in a diagram like those presented in Fig. 1 were following 
quite smoothly a curve, e.g., a quadratic one, the computation of the correlation coefficient 
remains based on fitting a linear trend line through such data points – so that all the deviations 
from the linearity, however regular, are treated as if they were a chaotic scatter.  



 
Figure 2   Some other examples of the correlation coefficient values for various linear dependences 
presented as the Cartesian diagrams  . Note that R does not depend on the slope of the 
linear relationship (the same R=1 applies to the whole bottom row of cases with different slope) – but 
changes sign if the slope is negative.  
 
 

 Note the absence of the result (failure of eq. (1)) in the case of the independence 
shown in Fig. 2 - with zero variation of one of the two variables. R cannot be evaluated as this 
would involve division by zero in eq. (1). To avoid an inconvenient stopping of the computa-
tion, it is usual to substitute R = 0  for the result in such cases.  In some (rather exceptional) 
situations when applying eq. (1) to the processing of images, this may generate regions of 
zero R  values that have no physical meaning and have to be interpreted taking this exceptio-
nal situation in mind. 
 There are other alternative interpretations of the meaning of the correlation coefficient 
R  that may provide a useful mental image to follow. Particularly useful may be the idea of  R  
characterising the angle between the two vectors  and  . This is based on the geometric 
interpretation of the scalar product  , Fig. 3. The two vectors are parallel if  R = 1, mutu-
ally perpendicular if  R = 0, and lead into the opposite directions for R = -1. The instruc-
tiveness of this geometric interpretation is, of course, lost for the higher-dimensional vectors. 
 Of particular interest for the use of eq. (1) in processing two images recorded one after 
another is yet another interpretation —  the one based on the idea of replacement of a particu-
lar element value in the vector  by the value at the same position in the vector . The values 
may be the intensities on the greyscale: for  R = 1, the values are equal, black colour in  is 
followed by the same black colour in  . For  R < 1 the replacement colour is not black but a 
shade of grey - and for R = -1 the black colour is replaced by its opposite, white. 
 In the use for comparinson of two images, the data values of the investigated variable 
(which in this case is usually the local light intensity values stored at the particular pixel posi-
tions) are stored as matrices. The correlated vectors,   and , are constructed from the ma-
trices by placing all the rows of the matrix one after another into a single long vector. If the 
images are identical, then the correlation coefficient is simply 

R = 1                                                  ... (2) 
and this fact is of practical importance for comparison of a pair of images as to their disparity.  



 
Figure 3     Another interpretation of the meaning of the correlation coefficient – applicable to the 
simplest case of two-element vectors  and  (i.e. both of dimension 2). In this case the expression 
eq. (1) represents the angle α between the two vectors.  

 
This has been already a standard processing method of images recorded by security surveil-
lance cameras. Watching the camera images in which nothing new happens is extremely bor-
ing task for security personnel. Computation of eq. (1) and generating an alarm if  R < 1 is 
nowadays a common procedure. A similar detection of  R < 1 has found use in other security 
applications such as tamper detection and tagging (tamper-proof fingerprinting of objects).  
 What is required in these cases is just an indication of identity. The tremendous loss of 
information – obtaining, by use of eq.(1),  just a single number from all the data contained in 
image pixels –  is in these applications an advantage. Similar uses were developed in medi-
cine (monitoring of changes such as, e.g., detection of growth of tumors to indicate their ma-
lignity). Analogous use in biology is described in Sviridov et al., 2006. Theoretically, the de-
tection of a change having occurred by the fulfilment of eq. (2) is not absolutely safe. The 
condition may be fulfilled also if the change in the surveyed image is precisely compensated 
for by an opposite change in other pixels. This, however, in most security applications is 
merely a theoretical possibility (and, at any rate, is left to the judgment of the personnel that is 
to be present anyway).  
 Because of the linearity implied in the definition of the correlation coefficient, such 
compensation, however, takes place also whenever an object in the image undergoes a linear 
transformation: rotation, translation or (within some practical limits dictated by the pixel size) 
dilatation. The linear transformation does not change the value of the evaluated coefficient R.  
This may have useful practical consequences, such as, e.g., insensitivity to a not exactly the 
same camera position in the tumor monitoring mentioned above. 
 



4. Authors’ new sub-image method 
The computation of the single value of the correlation coefficient evaluated in the 

known approach to comparison of images discussed above, of course, means a huge loss of 
information and cannot provide any useful information about the changes that took place in 
the cases characterised by  R < 1.  

The basic idea of the new authors’ method is evaluation of the local correlation coeffi-
cients in sub-images sequentially constructed for all corresponding pixel pairs in the same 
position in the image pair. All the pixels in the image are interrogated one by one and the con-
struction of the comparison vectors  and   is repeated in each of them. At each location 
thus the local character of the change that took place between the recording of the two images 
is evaluated. It is computed as the local value of the correlation coefficient – and usually plot-
ted using some form of false colour rendering. The value makes it possible to identify the 
character of the change that took place during the interval. A suitable presentation by an ap-
parent (false) colour focuses attention on this position in the image. In particular, it is possible 
to discriminate between the features that did not change (and are therefore, as a rule, uninter-
esting) and the features associated with the coherence of the structures. These become usually 
immediately apparent and this way the method suppresses the influence of the chaotic charac-
ter of the turbulence however much it covers the investigated structures.  
 There is a choice as to which images are used in the correlated pair. Interesting results 
were, e.g., obtained by correlating an instantaneous image with the image obtained by phase      

 
Figure 4   One of the methods of construction of the vectors  and  (here of dimension 25, which 
is most often used by the authors in practical tasks) for the computation of the local values of the cor-
relation coefficient.  The vectors are set up from the 5x5 sub-image in the neighbourhood of the par-
ticular interrogated pixel. 



averaging over several periods of a periodic or quasi-periodic process (many instability struc-
tures are quasi-periodic). Most correlation computations so far, however, were made using 
image pair recorded in succession, after a short time interval. The recorded changes are then, 
of course, rather small and it is a positive feature of the correlation technique that it enhances 
mostly the features at a local scale – as it takes into the correlated vectors  and  just the 
pixels from the immediate neighbourhood of the interrogated pixel – Fig. 4. 
 

  
Figure 5   Example demonstrating practical importance of the sub-image method in fluid mechanics: 
an example of computed distribution of the correlation coefficient in a jet flow (oriented vertically 
downwards, visualised by addition of water). The region with negative values of the coefficient (white 
in this picture) represents the investigated instability structure. Noteworthy is the change in the jet 
flow flow dynamics: the laminar flow near the nozzle (above) passes through the instability (white) 
and undergoes there a fast transition into turbulence (below).  



 There is also a wide choice as to which neighbouring pixels are chosen and in what 
manner they are arranged in the correlated vectors  and . The most often used procedure 
(taking the sub-matrix rows and placing them one by one) shown in Fig. 4 is just one of many 
available possibilities. The size n of the n x n  sub-images, of course, is reflected in the size 
of the structures that this method is capable of detecting. As mentioned in Fig. 4, it may be 
useful to suppress the influence of the pixels from more distant neighbourhood by giving less 
weight to the values to them. It is also, for example, possible to emphasise one direction (ver-
tical, horizontal, or at some inclination) of the detected features in the images by choosing for 
the construction of the vectors  and  the pixels in rows, columns, or some pixels in 
skewed arrays. 
 As an example of an identified coherent region in a pair of images of a submerged air 
jet, Fig. 5 presents the grey-scale coded distribution of the computed distribution of the local 
correlation coefficients. The insight into the dynamics of the changes in such a jet acquired by 
the discussed approach is obvious. 

 

5.  Characteristic features of the method 
 It is useful to present at this stage some examples of the functioning of the sub-image 
correlation method - so as to show its advantages as well as weaknesses. First, let us investi-
gate how it handles one of the main problems in processing flow visualisation images of cases 
of practical engineering importance, the ubiquitous turbulence. It produces a various degree of 
chaos leading to decreased correlation between the pictures. The discussed method can bring 
quantification of the degree, giving a numerical value of the magnitude of the present chaos. 
As an instructive example, the following Figs. 6 to 11 demonstrate the influence of the pres-
ence of the chaos on a simple example of a picture of a simple object – a cylindrical body, 
shown in Fig. 6. With the superimposed Gaussian chaos the same object is shown in the fol-
lowing Fig. 8. Performing a processing of this image pair (Figs. 6 and ) by the standard pro- 
 

                   

Figure 6 (Left)  An example of an image of a simple object (a cylinder chosen to be similar to a rotat-
ing vortex).     
Figure 7 (Right) The greyscale colourbar used for presentation of distributions of evaluated correla-
tion coefficients R. 



        
Figure 8 (Left)   An image of the same object as in Fig. 6 complicated  by superimposed Gaussian 
chaos.        
Figure 9  (Right)    Computed distribution of  the coefficient of correlation R  between the images in 
Figs. 6 and 8. Due to the presence of the (homogeneous) chaos, the correlation coefficient values are 
lower than white colour identity  R = 1  (as it is shown at the top of the scale in Fig. 7) – it is here grey 
indicating the chaos (which is near to R = 0, but here the chaos is not very strong and the values are 
positive).  

 

 
cedure – using the 5 x 5 local neighbourhood values in the correlated vectors according to 
Fig. 4 – produced the distribution of the correlation coefficient values as presented in Fig. 9. 
Obviously, despite the identity of the objects, the chaos decreases the coefficient to  R < 1. 
Since this is an artificial chaos of constant intensity, the value R is identical over the region in 
which the two image objects coincide, decreasing on the circumference of the region. The 
value reaches R = 1 (the white colour in the colourbar, Fig. 7) in the outer parts of the im-
ages, where there is no change.  
As it might be expected, a similar comparison of two images Figs. 6 and 10, with larger dif-
ference between them caused by the presence of chaos, leads to the similar distribution of the 
correlation coefficient in the image plane, Fig. 11. The region of the values  R < 1 is now 
darker, indicating less mutual correspondence, and also the blurred character of the bounda-
ries is more pronounced. In real visualisation images of turbulent flows, of course, the chaos 
is present in both images of the compared pair. The correlation coefficient in that case is not 
R = 1 in spite of perhaps similar visual impression, just because the chaos is stochastic and 
the turbulence does not remain the same after the interval of time elapsed between the re-
cording of the two images. 

 Let us now focus the attention on the character of the representation, in the 
plane of the local correlation coefficient values, of the effect of a motion of the object. Two 
images recorded with some time interval between them, will differ in the position of the ob-
ject. If the object moves coherently, as if it were a solid body, the change during the interval 
between recordings is identified as a negative value R < 0.  In the case of the object having 
sharp edges and coloured black on white background, the motion will result in one extreme 
("black") colour of the inside of the body replaced by the opposite extreme (" white") colour 
of the background. This change into the very opposite (opposite directions of the two vectors,  



 

      
Figure 10 (Left)   An image of the same (cylindrical) object as in Fig. 6, presented here with in-
creased intensity of the chaotic component.         
Figure 11 (Right)  Computed distribution of  the coefficient of correlation R between the two images 
in Figs. 6 and 10. Comparison with the previous Fig. 9 shows that the increased level of chaos has led 
to lower R values, quite near to R = 0 (note the darker grey shade - Fig. 7). Also, the chaos has led to 
significant blurring of contours of the dark region.  
 
  
cf. Fig. 3) is in an agreement with the result  R = -1 on that part of the image plane from 
which a narrow strip of the body circumference was removed.   
  In its details, however, the character of the correlation coefficient distribution may 
become quite complex, because of the inevitable passage through the R values starting at  R = 
1 in the background part that did not experience the change. It is again useful to follow the 
character of the correlation coefficient representation in some drastically simplified case of an 
artificially constructed object.  
 A suitable model object is presented in Fig. 12. Shown there is the dependence of the 
light intensity value (vertical co-ordinate in Fig. 12) on the horizontal distance in the image 
plane. In the next Fig. 13, the object is shown in the two images at different instants of time. 
 

 
Figure 12     Model object used for investigation of the properties of the discussed image processing 
method: a Gaussian “hill” having no clearly defined boundaries. Here it is shown in section by a verti-
cal plane passing through the “summit”. 



The vertical co-ordinate from Fig. 12 is presented in the two images in Fig. 13 by means of 
the false colouring. This uses the transformation function represented by the colourbar at the 
extreme right-hand side in Fig. 13. The shape of a " hill"  - actually a distribution described by 
the Gauss function – was chosen to approximate the generic regions with not very clearly de-
fined boundaries. Here, of course, the shape decreasing in the radial direction is defined by a 
deterministic function whereas real flowfield objects have the boundaries poorly defined due 
to the presence of chaos, which absent is in this simple example.    
 Since the object in this case has moved as a whole (it moved, in fact as a solid body, 
upwards by 7 pixels – a distance commensurable with the size of the neighbourhood chosen  
 

 
Figure 13    Two images of the model object from Fig. 12. Between the time these images were re-
corded, the object has moved upwards by 7 pixels.  The vertical co-ordinate in Fig. 12 is here repre-
sented by the false grey colouring according to the scale shown at right.  
 
 
in construction of the two compared local vectors  and   as shown in Fig. 4) the computed 
values of the local correlation coefficient R indeed do reach the negative values R < 0. This 
is presented in Fig. 14. It should be noted that the false colour function used (and defined in 
Fig. 14 by the colourbar at the extreme right-hand side) is a different one than the case of Fig. 
7 used in the previous examples. This colouring, with both ends of the colourbar dark, re-
sulted from conversion into greyscale of the original full-colour definition. 

The example of the "hill" shaped object is, of course, artificial. It is useful for study of 
the details of the correlation procedure, but too far removed from actual situations usually 
encountered in flowfield studies. It is useful to continue the study of the local correlation co-
efficient representations by yet another case, with the object geometry somewhat more akin to 
real situations. It is actually again the case of the cylindrical model body as presented above 
in Fig. 10, but its images (Figs. 17 and 18) now to not show the external appearance of the 
body, but in accordance with the actual situation in which the structures are identified in laser-
light sheet sections, what is presented in Figs. 17 and 18 are just planar regions produced by 
plane cut passing through the cylinder. To provide a more realistic setting, the perimeter of  



 
Figure 14    Demonstration how the correlation coefficient of the two images attains a negative value 
if the object moves during the interval between the recordings of the two images. The correlation coef-
ficient R is here computed for the two images from Fig. 13 by the discussed sub-image evaluation 
method. The positive value R = 1 far from the objects shows absence of any local change there.  

 
Figure 15    3D view of the distribution of the correlation coefficient R presented in Fig. 14, evalu-
ated by application of the developed image-processing procedure on the simple test object from Figs 
12 and 13. The procedure actually leads to distribution with somewhat complicated details. The value 
R = -1 is reached in a single point. 

 
 
the region is blurred by simulated chaos of turbulence – in fact this is a homogeneous Gaus-
sian "chaos" computed as a superposition of a deterministic formula.  The cylindrical body 
now moves in the direction of the cylinder axis. While in Fig. 17 the region is roughly cen-
tred, positioned in the middle of the image, the second Fig. 18 is recorded after a short time  



 
How the discussed method identifies motion of an object in the image plane – shown on a simple 
model case:  
Figure 17 (Left) Initial position of the region. It is a  result of laser-light sheet intersecting the cylind-
rical test object from Fig. 10, with superimposed gaussian chaotic motion.  
Figure 18 (Centre)  Position of the region from Fig. 17 in the second image. The mody moves in the 
direction of the cylinder axis.          
Figure 19 (Right) Computed distribution of  the coefficient of correlation R between the images from 
Fig. 17 and Fig. 18.  Because the object has moved as a solid body, negative values near to R = -1 are 
found at the ends of the region produced by the light section. 
 
  
interval. The region has in the meantime moved. The motion is indicated by the black dot 
drawn in Fig. 17 in the middle of the dark region. The dot is again drawn in Fig. 18, where it 
is immediately seen to be away from the centre of the dark region – which is marked by an 
empty circle. The distance travelled by the region is marked by the arrow.  Because the dark 
region has moved as a solid object, not changing its shape, the method of local correlation 
coefficients in sub-images produces values R = -1  in the areas in which the dark regions in 
the two images doe not coincide.  For the presentation of the coefficient values, the greyscale 
colourbar used for presentation the results with the cylindrical object in Fig. 7 applies again. The 
presentation in Fig. 19 shows the fully black regions in the areas of non-coincidence. In the 
example of a simple, artificially designed object presented in Figs. 17 to 19 the motion 
  
 

                  
A more general example of detection of correlated motion of an object in a plane:  
Figure 20 (Left) Initial position of the object – the grey region (with superimposed chaos).  
Figure 21 (Centre)  Position of the object in the second image. The body has moved in a more gene-
ral way – not only axially as was the case in Fugs. 17 and 18.          
Figure 22 (Right) Resultant computed distribution of  the local coefficients of correlation R. obtained 
for the two compared images Figs. 20 and 21.   



to be detected was somewhat special – in the axial direction. A more general case is presented 
in the otherwise similar next example presented in Figs 20 to 22. The computation of the co-
efficient R in the final result Fig. 22 has produced a contour of the moving object (the section 
through the cylinder from Fig. 10). This is a very general result, observed already earlier in 
processing images of jets and  impinging jets – Tesař et al., 2008, Tesař and Něnička 2009a, 
2009b, Tesař, Něnička, Šonský 2009, where the detected vorticed were clearly marked by 
values R = -1 in their cicumferences.   
 It is obvious that what the discussed method identifies of the detected objects is pro-
ducing contours of the moving objects in the plane of correlation coefficients R. This prop-
erty – revealing contours of coherent objects – us the basic property of the method. 

6.   Question of tomographic imaging 
 The essential problem mentioned in the Introduction part of the present paper is the 
difficulty of reconstructing the 3D structures of interest from the arrays of 2D images. The  
 

     
 Figures  23   If the processed images are recorded at short intervals between them, the detection of 
the contours of structures in the flow moving coherently makes it relatively easy to reconstruct the 
structures as spatial objects. The identification of the contours is particularly helpful. 



 
Figures  24   Schematic representation of reconstructing a helical vortical structure as a spatial 
object from the contours (heavy black curves) in the equal-phase planes.  

 
images are planar and may be recorded in known spatial positions of the planes. For example, 
in the investigations of helical structures in jets and  impinging jet flows – Tesař et al., 2008, 
Tesař and Něnička 2009a, 2009b, Tesař, Něnička, Šonský 2009 – the recording is controlled 
by phase trigger so that it is possible to investigate – one by one – the phase angle locations 
corresponding to the whole period of the triggered beginnings of structure generation. It is 
also possible – as shown in Fig. 23 – to record the individual stages of the progress and de-
velopment of the vortical structures as they pass through the interrogation window. 

 The property of the structure detection method – the fact that the correlation procedure 
generates the contours of the light-sheet sections through the structures – makes it easily pos-
sible to use these sections as inputs into the tomographic processing. The image planes are 
first arranged into their proper spatial positions and then, in the second step, the contours 
found in individual planes are mutually connected by smooth surfaces to set up the spatial 
three-dimensional bodies. 
 

7.  Conclusions 
 In this paper, new technique is introduced for detecting and  investigation of structures 
present in fluid flows due to hydrodynamic instabilities. The fundamental problem is how to 
extract information about unsteady three-dimensional objects from two-dimensional flow visu-
alisation images. The other problem is the structures are submerged in chaotic turbulence. 
Because of the unsteady character of the objects of interest, turbulence cannot be simply fil-
tered out by statistical averaging. Authors describe a recently introduced method of process-
ing flow visualisation images, different from the know POD approach. In principle, the 
method operates with two digital images, recorded at slightly different instants of time. All 
pixels of this pair are processed one by one by computations of the correlation coefficient R 
between the vectors constructed from the values in the neighbouring pixels – mostly in the 
pair of n x n pixel sub-images placed one by one. The results is a map of the correlation coef-
ficient values. In places where the coefficient values are positive and high (near or equal to R 
= 1 the flowfield does not exhibit any changes. Values near to R = 0 indicate chaotic behav-
iour. Of main interest are negative values, which indicate a coherent motion. The regions of R 
< 0  are usually found on the contours of the instability structure regions.   
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