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Abstract: In order to properly explore response of a model, one needs to perform simulations for a set of 
design points. When dealing complex non-linear models, the simulations are usually very time-
consuming, hence the number of simulations performed within a limited time is rather low. Randomly 
chosen design points do not ensure the observed properties will be captured properly. Therefore, the 
design points must be chosen carefully. The motivation of the presented contribution is to investigate 
methods, which are suitable for generating designs in discrete parameter space, where each parameter 
can attain different number of levels, because commonly used software based on Latin Hypercube 
Sampling fails in solving such a situation. Hence, we compare here several well-known metrics for 
assessing optimal designs as for instance the Euclidean maximin distance, the maximum pairwise 
correlation or the D-optimal criterion. The resulting optimal designs are consequently employed for the 
evaluation of the stochastic sensitivity analysis so as to investigate their ability in prediction of the 
‘parameter-response’ correlations. 

Keywords:  Design of experiments, discrete domains, space-filling, orthogonality, stochastic sensitivity 
analysis. 

1. Introduction 

The increasing complexity of numerical models makes the exploration of a model response an 
important area of investigation. To minimize the number of time-exhaustive simulations, reliable 
meta-models are usually constructed (Simpson et al., 2001). The meta-models represent the 
approximation/interpolation of a model response over the domain of model parameters called the 
design space. They are usually obtained by minimization of their error in a set of design points. The 
predictability of the resulting meta-model is in such setting driven by the choice of the design points 
being often called as the design of experiments.  

The following section reviews several common metrics for assessing optimal designs and explores 
their properties when applied to discrete design spaces. Each metric defines a different optimal design. 
It is shown that the design optimal with respect to one metric does not reach the optimum for other 
metrics. After introducing the space-filling algorithms, in Section 3, we present their mutual 
comparison with emphasis on discrete domains. This is complemented with the optimal LHS 
algorithm due to Iman & Conover (1980), which is available in many engineering software packages. 
The ability of the optimal designs to capture the impact of model parameters to model responses is 
then critically assessed in Section 4. Finally, Section 5 gives conclusions and suggests directions for 
future work. 

2. Metrics for assessing optimal designs 

for the determination of a suitable design of experiments.  

esign points. The points are distributed as uniformly as possible when the potential 

                                                

Let us recall several metrics commonly used 

Audze-Eglais objective function (AE) proposed by Audze & Eglais (1977) is based on a potential 
energy among d
energy proportional to the inverse of the squared distance between points is minimized, i.e. 

 
*   Eliška Janouchová and Ing. Anna Kučerová, Ph.D.: Faculty of Civil Engineering, Czech Technical University in Prague, 
Thákurova 7/2077; 166 29, Prague; CZ, e-mails: eliska.janouchova@fsv.cvut.cz, anicka@cml.fsv.cvut.cz 

239



 

∑∑
= +=

=
n n

AE 1 minmin , (1)  
i ij ijL1 1

2

here n is the number of points and Lij is the Euclidean distance between points i and j. 

Euclidean maximin distance (EMM) is another metric preferring uniform designs. For a given design, 
larger 

nduce 

nks.  
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the Euclidean maximin distance is defined as a minimal distance among all distances Lij. A 
value is better, so we minimize the negative value of the minimal distance.  

Pearson product-moment correlation coefficient (PMCC) can be used as a metric, which does not 
prefer uniformity, but leads to orthogonal designs. A correlation among design points can i
spurious correlation among coefficients of linear meta-models and can affect other meta-model-based 
estimates (Cioppa & Lucas, 2007). The simplest metric computes the absolute value of a correlation 
for each pair of variables. The goal is then to minimize the obtained maximal correlation. 

Spearman's rank correlation coefficient (SRCC) is considered to be more general than PMCC, because 
the PMCC reveals only the linear dependence between two variables. Here, the correlation is not 
computed between coordinates of points, but these coordinates are ordered and the correlation is 
computed between the resulting ra

D-optimality (Dopt) is a metric formulated for maximization of entropy. The goal is to maximize the 
determinant of the information matrix A. Here we employ a Bayesian modification to the information 
matrix proposed by Hofwing & Strömberg (2010) in order to eliminate duplicates in the final D-
optimal design. As we assume a minimization process, we minimiz AdetDopt −= . 

When determining the optimal design of experiments, the criteria described above are supposed to be 
minimized by an optimization algorithm. Therefore, one aspect is the difficulty of its minimization. As 
the first study, we considered two-dimensional square domain with the fixed position of three points 
placed into the corners (top-right, bottom-right and bottom-left). Then, we were searching for an 
optimal po  f f nt. Fig. 1 shows the value of particular metrics as a function of the 
fourth point 

sition o  the ourth poi
position. 

Fig. 1: Shape of different metrics for varying position of the 4  point. Black is the desired minimum, 
white is the maximum. From left: AE, EMM, PMCC, SRCC, Dopt. 

Regarding the obtained shapes, we can conclude that the AE, EMM and SRCC metrics have one clear 
optimum in the fourth (top-left) corner. The value of the AE metric steeply decreases with increasing 
distance from the three occupied corners, but there is a large slowly decreasing valley towards the 
fourth corner. The EMM metric decreases more rapidly, but its shape is not smooth. The SRCC metric 
is n 
unfeasibl ut have 
local extre

tely, such 
an approach is not applicable for discrete variables as each may attain different number of values. 

l designs not suffering the LHS restrictions.  

 
th

constant over almost the whole domain except boundary, which can make the optimizatio
e for gradient-based algorithms. Finally, the metrics PMCC and Dopt are smooth b

mes at occupied corners. Therefore, we conclude that the AE metric seems to be easiest for 
the minimization. 

3. Tournaments of metrics 

When generating large designs including a high number of points, the optimization of the described 
metrics becomes a complex task. Therefore, packages with the optimal Latin Hypercube Sampling 
method are often used for this purpose. LHS defines constraints to the designs which significantly 
reduce the design space and simplifies the following optimization. The main idea is to divide the 
interval of each variable to a number of levels equal the number of design points. Unfortuna

Hence, we focus on the optima
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timal LHS is added, since only in such a scenario, the number of 

To examine the quality of optimal designs with respect to different metrics, we have studied three 
different situations with 7, 10 and 13 design points to be placed into the two-dimensional square 
discrete domain with 10 levels in both dimensions. Since the designs are not excessively complex, a 
Simulated Annealing method with a sufficient number of iterations was applied to find the global 
optimum on each metric. While AE and Dopt metrics both define only one optimal design, other 
metrics lead to several designs with the same optimal value. Hence, the results in all following tables 
present the worst case scenario – the values correspond to the worst (optimal valued) design. In each 
row of Tabs. 1 – 3, one metric was optimized and the obtained optimal design was evaluated by other 
metrics. In Tab. 2, one row for op
design points is equal to the number of levels in both dimensions. In particular, oLHS optimized with 
respect to SRCC were obtained by software SPERM 2.0 (Novák, www). 

 
Tab. 1: Values and ranks (#) of metrics optimized for placing 7 points into the domain 10×10. 

Metric AE EMM PMCC SRCC Dopt Average # 
 value  # value  # value  # value  # value  #  

AE 0.485 1 -4.00 2 0.018 2 0.000 1 -2.1013 2 1.6 
EMM 0.587 3 -4.47 1 0.271 4 0.198 3 -5.1012 3 2.8 

PMCC 4.609 4 -1.00 3 0.000 1 0.372 4 -1.107 4 3.2 
SRCC 4.784 5 -1.00 3 0.474 5 0.000 1 -1.106 5 3.8 

Dopt 0.514 2 -4.00 2 0.019 3 0.049 2 -3.1013 1 2 
 

Tab. 2: Values and ranks (#) of metrics optimized for placing 10 points into the domain 10×10. 
Metric AE EMM PMCC SRCC Dopt Average # 

 val  # v v v va  # ue alue  # alue  # alue  # lue  
AE 1.375 1 -3.00 2 0.015 3 0.020 3 7.1015 6 3.0 

EMM 1.801 3 -3.61 1 0.153 4 0.142 5 -1.1027 2 3.0 
PMCC 8.092 5 -1.00 5 0.000 1 0.227 6 -1.1016 4 4.2 
SRCC 9.408 6 -1.00 5 0.241 5 0.000 1 -7.1015 5 4.4 

Dopt 1.450 2 -2.83 3 0.015 3 0.026 4 -7.1028 1 2.6 
oLHS 3.555 4 -1.42 4 0.006 2 0.006 2 -3.1020 3 3  .0

 
Tab. 3: Values and ranks (#) of metrics optimized for placing 13 points into the domain 10×10. 

Metric AE EMM PMCC SRCC Dopt Average # 
 value  # value  # value  # value  # value  #  

AE 2.83 1 -3.00 1 0.015 2 0.017 2 -1.1036 2 1.6 
EMM 3.20 2 -3.00 1 0.153 3 0.186 5 -6.1028 3 2.8 

PMCC 16.04 5 -1.00 3 0.000 1 0.180 4 -2.1021 5 3.6 
SRCC 14.50 4 -1.00 3 0.241 4 0.000 1 -2.1025 4 3.2 

Dopt 3.42 3 -1.42 2 0.015 2 0.056 3 -6.1042 1 2.2 

4. Prediction of correlation between model inputs and outputs: illustrative examples 

Am rs 
with high n m respo s is u one astic vity

 
Ta  Prediction of i u ut r n  m =  

g M op oLHS 

ong the first steps of meta-model formulation is the determination of important model paramete
impact o odel nse. Thi sually d by stoch sensiti  analysis. 

b. 4: np t-outp  co relatio for odel z  x + y.
Desi n Full AE EM PMCC SRCC D t 

        
corr (x, z 0 0 1 9 9 0.8) .700 .699 0.8 3 0.236 0. 75 0.6 4 35 
co , z 0 0 6 1 0.5rr (y )  .700 .686 0.5 6 0.840 0. 61 0.673 30 

Sum of errors  0.016 0.247 0.604 0.814 0.033 0.305 
Rank (#)  1 3 5 6 2 4 
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 with two discrete parameters x and y, each having 10 levels. The real parameter-response 
full design comp ising all 100 samples. One design with 10 points 

was optimized for rameter-response 
correlation. The re

Tab. 5: ou o 2 2

Therefore, we studied the ability of optimal designs to predict the SRCC between each parameter and 
the model response. For the sake of clarity, we considered two simple models, linear and non-linear, 
both along
correlation can be obtained for a r

 each metric and we evaluated the corresponding estimate of the pa
sults are summarized in Tabs. 4 and 5. 

 
 Prediction of input- tpu  correlation ft r model z = x  + y . 

Design Full AE EMM PMCC SRCC Dopt oLHS 
        

corr (x, z) 0.686 0. 969 0.  419 0.  195 0. 8 94 0.  698 0. 7 82
corr (y, z)  0.686 0.686 0.875 0.914 0.160 0.669 0.450 

Sum of errors  0.013 0.456 0.719 0.788 0.029 0.377 
Rank (#)  1 4 5 6 2 3 

5. Conclusions 

The goal of this contribution was to compare different metrics determining design of experiments 
suitable for construction of a meta-model. In Section 2, it was shown that the AE metric is superior to 
other metrics from an optimization point of view. ection 3 then examines designs optimized for one 
metric with resp  defines nearly 
orthogonal desig arly orthogonal 
designs with good u , ei r it it a uality of AE 
designs. Finally, Section 4 presents tw exam s of design-based estimation of the parameter-
response correlatio e E ri ed o e should also 
point out that the H e  R w e an estimate 
with non-negl ver eles d  is  y to 
quickly generate re ood and ve p  desig and es cially signs  non-uniformly 
distributed parameters. Unfortunately, oLHS is useless in case of discrete domains with different 

future work on development of an optimization 
to minimize the AE metric even for more complex designs in discrete space. 

www) Generator of optimal LHS designs SPERM 2.0, www: 
http://www.cideas.cz/ke_stazeni/sperm/index.htm. 

, H.P. (1987) Maximum entropy sampling. Journal of Applied Statistics, 14, 2,  

17, 2, pp. 129-150. 

S
ect to other metrics. The results have shown that the AE metric
ns with very good uniformity. Also the Dopt metric provide the ne

niformity  but th r ove all qual y is a l tle bit worse th n the q
o ple

n. Also her , the A  and Dopt met cs exce  the remaining nes. W
commonly used oL S gen rated by the SPE M soft are can produc

igible error. Ne th s, its widesprea  usage  driven by its uncontested abilit
asonably g ry com lex ns pe  de  for

number of parameter levels. Hence, we focus our 
algorithm capable 

Acknowledgement 

The financial support of this work by the Czech Science Foundation (projects No. 105/11/0411 and 
105/11/P370) is gratefully acknowledged. 

References  
Audze P. & Eglais V. (1977) New approach for planning out of experiments. Problems of Dynamics and 

Strengths, 35, pp. 104-107. Zinatne Publishing House. 
Cioppa, T.M. & Lucas, T.W. (2007) Efficient nearly orthogonal and space-filling latin hypercubes. 

Technometrics, 49, 1, pp. 45-55. 
Hofwing, M. & Strömberg, N. (2010) D-optimality of non-regular design spaces by using a Bayesian 

modification and a hybrid method. Structural and Multidisciplinary Optimization, 42, 1, pp. 73–88. 
Iman, R.L. & Conover, W.J. (1980) Small sample sensitivity analysis techniques for computer models, with an 

application to risk assessment, Communications in Statistics, Part A. Theory and Methods, 17, pp.1749-1842. 
Johnson, M., Moore, L. & Ylvisaker, D. (1990) Minimax and maximin distance designs. Journal of Statistical 

Planning and Inference, 26, 2, pp. 131-148. 
Novák, J. (

Shewry, M.C. & Wynn
pp. 165-170. 

Simpson, T.W., Poplinski, J.D., Koch, P.N. & Allen, J.K. (2001) Metamodels for Computer-based Engineering 
Design: Survey and recommendations. Engineering with Computers, 

242


