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Abstract: The paper analyzes the influence of initial imperfections on the load-carrying capacity of a 
slender strut, applying the ANSYS programme. The geometrical and material nonlinear finite element 
method was applied for the theoretical analysis. Modelling of the steel structure was performed using 
SHELL elements. The effect of input imperfections on the load-carrying capacity is evaluated by Sobol’ 
sensitivity analysis. The computation model elaborated is unique with regard to its numerically 
demanding character. The Latin Hypercube Sampling method was applied for the evaluation of sensitivity 
indices. 
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1. Introduction 

The sensitivity analysis is a study of how the variation in the output of a model (numerical or 
otherwise) can be apportioned, qualitatively or quantitatively, to different sources of variation, and 
how the given model depends upon the information fed into it (Saltelli et al., 2004). If we mean the 
computation models of building structures, the sensitivity analysis can be defined as a study of 
relationships between information flowing in and out of the model. Finite element models (FEM) of 
steel structures usual for the computation and analysis of output quantities necessary for an assessment 
of limit states of the structures mentioned, see, e.g., (Gottvald et al., 2010). The output quantities 
usually are load-carrying capacity, stress state, and deformation. The input quantities usually are 
material and geometrical characteristics of structures the histograms and statistic characteristics of 
which are determined by experimental research (Melcher et al., 2004; Kala et al., 2009; Kala et al., 
2010). Let us note that not all the uncertainties are of stochastic character, see, e.g. (Kala, 2008). The 
epistemic uncertainty does not need to be studied in case that the input random quantities have been 
determined by experimental measurements including a considerable number of observations. Then 
there can be applied purely stochastic approaches. The stochastic sensitivity analysis determines which 
input random characteristics have the greatest influence on the random output. In general, there can be 
distinguished the local sensitivity analysis (Kala, 2005) and the global sensitivity analysis, see, e.g., 
(Kala, 2009). The local sensitivity analysis (e.g., correlation coefficients approach) does not provide 
any instruments for an analysis of the influence of higher order interaction effects which occur in 
systems consisting of more members (Kala, 2011a; Kala, 2011b0). In spite of this fact, it is applied to 
numerically demanding computation models, see, e.g., (Melcher et al., 2009). The global sensitivity 
analysis is much more demanding on the CPU time of the computer but in connection with nonlinear 
computational FEM, it provides importantly more information on the system studied. The detailed 
computation model is the basic prerequisite for obtaining exact results. The application of nonlinear 
FEM is necessary when, e.g., ultimate limit state of steel hot-rolled members is studied the load-
carrying capacity of which is influenced by residual stress. The presented paper deals with the 
application of global sensitivity analysis to the study of influence of imperfections on load-carrying 
capacity of a steel hot-rolled member under compression. The results are unique because the influence 
of all the imperfections together with residual stress has been include into the solution. 

                                                 
* prof. Ing. Zdeněk Kala, Ph.D. and assoc. prof. Ing. Jiří Kala, Ph.D.: Institute of Structural Mechanics, Brno University of 
Technology, Faculty of Civil Engineering, Veveří Street 95; 602 00, Brno; CZ, e-mails: kala.z@fce.vutbr.cz, 
kala.j@fce.vutbr.cz 

271



 

2. Sensitivity analysis 

Within the scope of modelling, the notion “sensitivity analysis” has different meaning to different 
people, see, e.g., (Okazawa et al., 2002). The sensitivity analysis enabling an analysis of the influence 
of arbitrary subgroups of input factors (doubles, triples, etc.) on the monitored output was worked out 
by the Russian mathematician Ilja M. Sobol (Sobol, 1993; Saltelli et al., 2004). The sensitivity 
analysis of load-carrying capacity (random output Y) to input imperfections (random inputs Xi) was 
performed in the presented study. Sobol’s first order sensitivity indices may be written in the form: 
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Si measures the first order (e.g., additive) effect (so-called main effect) of Xi on the model output Y. 
The second order sensitivity index Sij is the interaction term (2) between factors Xi, Xj. Analogously, 
the second order sensitivity indices may be rewritten: 

 
( )( )
( ) ji

ji
ij SS

YV
XXYEV

S −−=
,

 (2) 

Sensitivity index ij expresses the influence of doubles on the monitored output. Other Sobol’ 
sensitivity indices enabling the quantification of higher order interactions are expressed similarly.  
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The number of members in (3) is 2M-1, i.e., for M = 3, we obtain 7 sensitivity indices; for M = 10, 
1023 sensitivity indices; it is excessively large for practical use. The main limitation in the 
determination of all members of (3) is the computational demanding character. 

3. Computation model and input random variables 

The strut was meshed in the programme ANSYS, being modelled of thin-walled elements, type 
SHELL 181. The symmetry was used with regard to the very demanding character of the problem 
solved. In the bar half in the symmetry plane, we supposed the translation fixed in all cross-section 
nodes in direction of axis X, and the rotation around axes Y and Z. On the second edge of the bar half 
solved, we fixed the translation of nodes in direction of the axis Y on the flange of profile IPE220. On 
the lower flange of that edge, we fixed the translations in the direction of axis Z. The upper flange was 
left free. The Euler method was applied, based on proportional loading in combination with the 
Newton-Raphson method in the geometrical and material non-linear FEM solution. 

 
Fig. 1: a) Finite element shell model with residual stress distribution and b) Cross-section geometry. 
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The load-carrying capacity was determined as the loading constant during which the matrix 
determinant of tangential stiffness Kt of the structure would approach zero with certain accuracy. Since 
an accuracy of 0.1% was required for the determination of load-carrying capacity, it was necessary to 
use automatic control of the loading step with the Euler method. Bilinear kinematic material 
strengthening was assumed. We also assumed that the initial steel plasticization occurred when the 
Mises stress exceeded yield strength. 

Theoretical models for expression of load carrying capacity should be always based on assumption 
that a real structure member contains various imperfections which influence the load carrying 
capacity. Generally, all input imperfections are of random character. Relatively sufficient information 
on material and geometrical characteristics of mass produced members of steel structures is available 
in comparison to other engineering structures (Soares, 1988; Melcher et al., 2004; Kala et al., 2009). 
Residual stress was introduced with mean value 80 MPa and standard deviation 40 MPa, with 
triangular distribution both on flanges and web. All the input random quantities were considered with 
the Gauss density function. All the input characteristics, synoptically given in Table 1, are statistically 
independent of one another. 

Tab. 1: Input random quantities. 
 Random variables  Mean value Standard deviation 

 Yield strength fy 297.3 MPa 16.8 MPa 

 Cross-sectional depth h 220 mm 0.975 mm 

 Cross-sectional width b 110 mm 1.093 mm 

 Web thickness t1 5.9 mm 0.247 mm 

 Flange thickness t2 9.2 mm 0.421 mm 

 Initial crookedness e0 0 0.00077 L 

 Young’s modulus E 210 GPa 12.6 GPa 

 Residual stress rs 80 MPa 40 MPa 

4. Sensitivity analysis results and discussion 

The LHS method was applied to calculation of sensitivity indices (McKey et al., 1979; Iman and 
Conover, 1980). The model output Y is the load-carrying capacity calculated in each run of the LHS 
method. The conditional random arithmetical mean E(Y⏐Xi) was evaluated for 3000 simulation runs; 
the variance V(E(Y⏐Xi)) was calculated for 3000 simulation runs, as well. The variance V(Y) of load 
carrying capacity has been calculated for 10000 runs. The second-order sensitivity indices Sij were 
calculated analogously. The influence of imperfections on the load carrying capacity changes with the 
strut increasing nondimensional slenderness, see Fig. 2. 

 
Fig. 2: Sensitivity analysis results. 
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5. Conclusions 

The results presented in this paper quantify the influence of material and geometrical characteristics on 
the load-carrying capacity. The Sobol’ sensitivity analysis in connection with nonlinear shell FEM 
enables to quantify the influence of residual stress, too. It is evident that the influence of residual stress 
is not the same as the influence of initial crookedness. From the point of view of standards for design 
of steel structures, it rises up the question whether the influence of residual stress can be reliably 
substituted by increase of the amplitude of bow imperfections. One of approaches how to answer this 
question is the elaboration of probabilistic reliability analyses of the ultimate limit state of steel 
members under compression (Kala, 2007). Further on, the results of the Sobol’ sensitivity analysis 
have shown that the higher order interaction effects are relatively low. 
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