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Abstract: Motion planning is essential for mobile robot successful navigation. There are many 
algorithms for motion planning under various constraints. However, in some cases the human can still do 
a better job, therefore it would be advantageous to create a planner based on data gathered from the 
robot simulation when humans do the planning. The paper presents the method of using the neural 
network to transfer the previously gained knowledge into the machine learning based planner. In 
particular the neural network task is to mimic the planner based on finite state machine. The tests proved 
that neural network can successfully learn to navigate in constrained environment. 
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1. Introduction 

Navigation of mobile robots usually incorporates several modules among which the path planning and 
position estimation are the most important ones. There is a vast number of approaches for path 
planning in both constrained and unconstrained environment. Most of the planning algorithms do not 
take into account dynamic obstacles or when they do, low number of obstacles is expected. The usual 
solution is to detect the dynamic obstacle and predict its motion thus creating another constrain in the 
configuration space.  

In our application the safe path planner controls the robot in indoor environment with dynamic 
obstacles. There is high number of obstacles and their motion is hard to predict. This excludes most of 
the planning algorithms that calculate the whole track to the goal as unpredictable movement can 
create constraint that suppress validity of the path proposed. Further issues to consider in the 
application are: the optimality of the path is not required, available computational power is limited. 
Therefore some kind of semireactive navigation must be used, that is fast enough but does not ignore 
the goal position. That lead to idea to use complex controller, gather the data and use machine learning 
to mimic (approximate) such controller in a fast manner. Neural networks (NN) are a natural choice of 
machine learning engine for such a case. In (Yang, 2003, Janglová, 2004, Sirotenko, 2006) the NN is 
used for mobile robot navigation based on proximity sensors values. Our proposed method also uses 
the proximity sensors values, but additionally incorporates the past values of planner output as NN 
inputs. Such approach enables NN to learn the internal state of the planner and solve the navigation 
problem when the nonholonomic constraints require the robot to backup. 

The paper describes proposed method on the case, when motion planner based on finite state machine 
(FSM) with internal state was used to generate the data for feedforward neural network. The network 
is then trained and further used as the motion planner. 

2. Methods  

In order to use neural network based planner, the data must be gathered first for NN training. While 
our ultimate goal is to use observations of human controlling the robot, in the first attempts we used 
the planner currently used in our robot that is based on finite state machine with internal state. The 
scheme of the simulation data flow is shown in Fig. 1. 
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The planner receives the array of ultrasound sensors proximity measurements, the estimate of the 
robot position (x and y coordinates and heading angle in global coordinate system) and the position of 
the goal. The estimate of robot position is obtained from the estimator that implements extended 
Kalman filter. The output from the planner consists of generalized velocities (translation and rotation) 
that are fed into robot simulation module in the case of simulation or to the action converter in the case 
of real robot, where the velocities are recalculated into main drive velocity and front wheels steering 
angle. Those actions are then fed into the actuator controllers. The estimator receives the action 
(velocities) and measurement of static beacons placed in known positions. Extended Kalman filter 
produces the estimate of the robot position, further used in the planner. 
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Fig. 1: Gathering data for NN training. 

Neural network based planner uses feed forward NN to approximate the planner to be learned. The 
feed forward NN does not contain the feedback connections, however, the feedback is required as the 
original planner contains the internal state. Therefore the delayed outputs (generalized velocities) are 
used as additional inputs to the network. Furthermore the recalculation of the angle towards the goal 
position is also performed before the data are fed into the network. To summarize the inputs to the 
NN, it consists of following variables; 

  (1) 1 1 1,..., , , , ,..., , ,
TT R T R
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where  is number of proximity sensors,  is i-th proximity sensor measurement, n iu gϕΔ  is the angle 

towards the goal,  are the translational and rotational velocities delayed for a single step delay 
and  is maximum number of delays used. 
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The angle towards the goal is calculated from the estimated position, the proximity measurement is in 
simulation disturbed with the Gaussian noise with experimentally found characteristics. Once the data 
are gathered and NN is trained to sufficient level of precision, it can be incorporated into the robot 
navigation structure. The overall scheme is shown in Fig. 2.  

3. Numerical experiments details  

The robot used for experiments is test wheeled robot with driven back wheels and Ackerman steering. 
Robot motion is modeled in discrete time steps. The motion model incorporates the noise on front 
wheels IRC sensors used to calculate the estimate of odometry readings. The localization of the robot 
is obtained via extended Kalman filter that uses the actions given by the planner, motion model and 
readings of beacon receiver that gives the relative angle to beacons placed in fixed known positions. 
Details about the position estimator can be found e.g. in (Krejsa, 2010). 

The data used for training were obtained from a single experiment where the robot was driven by FSM 
based planner to the goals sequentially regenerated once the robot approached to the given distance to 
the current goal. The goals were generated randomly in a simulated room of H shape with overall size 
of 20x20 meters. The training run included dynamic obstacles of various sizes moving in various, but 
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constant velocities. The translation velocity of the robot was limited to 0.6m/s and data were 
calculated in time step of 0.5 sec. Total of 2351 sets of data were gathered and preprocessed for the 
training. 
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Fig. 2: NN used as motion planner. 

Neural network was trained off-line with traditional Levenberg-Marquardt algorithm implemented in 
Matlab Neural Network Toolbox. Initially the number of past actions fed back as the input to the 
network (parameter m from (1)) was set to 1. The learning MSE stayed at about 1.26e-3 and when NN 
was used in navigation process it exhibited occasional unstable behavior. Therefore m was increased 
to 2, which proved to be sufficient. The learning MSE quickly dropped to 2.31e-4. The first impression 
of the quality of the training was obtained by testing the network on previously unseen set of test data 
gathered by the same process as the training data. The comparison of network output and known 
outputs are shown in Fig. 3. 

For further testing the learned network was used in simulation of the whole navigation process. As the 
dynamic obstacles move in random directions, NN planner can not be directly compared with its 
predecessor. In order to determine successfulness of the planner the number of simulations were run 
and results were expressed in two simple parameters: number of steps required to reach the goal and 
number hits to the obstacles (both static and dynamic). Regarding both parameters the methods are 
directly comparable, see Tab. 1. 

Tab. 1: FSM and NN planners comparison. 

Planner hits / 1000 steps average path length 

FSM based 0.272 95.4 [m] 

NN based 0.261 98.2 [m] 

4. Conclusions 

Simulation results proved that neural network based planner is capable of learning required behavior. 
The main advantage of using the NN planner is the speed and low computational requirements. The 
drawback might be in inability to guarantee safe planning in all times, therefore certain safety measure 
module must be incorporated that will stop the robot when proximity sensors detect distances below 
safety threshold. Such system is already implemented and used in real robot. 

NN planner with the feedback of previously generated actions used as additional inputs enables the 
planner to consider the state of the robot, enabling the use of such planner under nonholonomic 
constraints when backing up is necessary to meet the goal. 

Regarding future work, the next step is in gathering the data from simulator when human will be used 
to control the robot based on the robot sensor information available. Whether the NN planner trained 
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on such data is capable of planning in hard to solve situation (typically overcrowded space) is the 
question we would like to answer. 

 
Fig. 3: Test run results. 
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