
 17th International Conference
ENGINEERING MECHANICS 2011

Svratka, Czech Republic, 9 – 12 May 2011

PARALLELIZATION OF THE DELAUNAY TRIANGULATION

D. Krybus*, B. Patzák*

Abstract: This paper deals with the parallelization of Delaunay triangulation. Meshing algorithms are
relatively time and memory consuming for large problems. In connection with the spread of multi-core
CPUs even among personal computers, the parallelization of the meshing process permits optimal
utilization of available computational resources. The triangulation is used for the mesh generation in the
context of numerical modeling of fluid flow via Lagrangian finite element method. The possibility of the
reuse of the previously developed sequential code in terms of parallelization is discussed and other
possible approaches are outlined.

Keywords: Delaunay triangulation, mesh generation, parallelization, shared memory, distributed
memory.

1. Introduction

Typical approach in modeling fluid flow consists in the use of Eulerian description of motion. The
computational mesh is fixed and the material points move with the respect to the grid. In Lagrangian
description, each node of the computational mesh is associated with the material particle during the
motion. Arbitrary Lagrangian – Eulerian (ALE) formulation combines these two classical approaches
mentioned in order to gain their best features and avoid their disadvantages (Donea & Huerta, 2004).

The fact that the movement of a domain occurs separately from moving a finite element mesh, is
common for both ALE and Eulerian approaches. The relationship between them introduces convective
terms of movement in momentum equations. Their treatment is not the only numerical difficulty
coming with ALE and Eularian approaches. Also the proper treatment of the incompressibility
condition, tracking of a free surface, correct interaction on a phases contact or description of large
movements need to be secured.

The use of Lagrangian description has several advantages and some of the mentioned difficulties are
not involved. Usually, it is widely applied for modeling large deformations in structural mechanics.
Perhaps the main drawback of this approach consists in the frequent demands for re-meshing in order
to avoid numerical instability due to large distortions of computational mesh. On the other hand,
tracking of free surfaces and material interfaces is possible in a natural way. The Lagrangian
formulation of the problem is set by a collection of so-called particles which represents a certain part
of continuum. To integrate governing equations in each solution step, a mesh built from particles is
needed. The mesh is generated by connecting particles together, actual positions of which are given by
initial conditions or are determined by solution procedure. In this work, a triangulation of set of
particles is used, as triangular elements are simple to formulate and numerically efficient. The
algorithm based on Delaunay triangulation has been chosen.

The requirements for the parallelization of the meshing process are hard mainly due to relatively high
time and memory demands of these algorithms. The parallelization allows obtaining results in
reasonable time by utilization of potential of modern multi-core processing units. Nowadays, almost
every personal computer or laptop comes with a multi-core CPU. It is natural and reasonable to use
these available resources.

* Ing. David Krybus and prof. Dr. Ing. Bořek Patzák: Department of Mechanics, Faculty of Civil Engineering, Czech
Technical University in Prague; Thákurova 7; 166 29 Prague; CZ, e-mails: david.krybus@fsv.cvut.cz,
borek.patzak@fsv.cvut.cz

331

2. Delaunay triangulation

Many algorithms for mesh generation are based on Delaunay triangulation. It consists in such
triangulation of a general set of points that no point lies inside circumscribed circle of any triangle
except three points forming triangle, that actually lie on circle. Delaunay triangulation maximizes the
minimum angle in triangles and it leads to a quite numerically stable mesh. This definition can by
simply extended to a three-dimensional space, where the triangulation results in set of tetrahedrons
with empty circumscribed spheres.

There are a lot of algorithms constructing the Delaunay triangulation. Incremental algorithms build a
large group. In each step, a new point is added to the current triangulation, and then the mesh is rebuilt
in order to satisfy the Delaunay condition. Flipping algorithms consist in changing, so called
“flipping”' non-Delaunay triangle edges. At the beginning, a general mesh is constructed. In the next
step, it is optimized with the flipping to satisfy the Delaunay property. Other methods are based on the
“divide and conquer” or the projection algorithms. The different approaches are discussed and
compared in the Shewchuk’s paper (1996).

Delaunay triangulation using Bowyer/Watson incremental algorithm was implemented by authors and
results were presented in the past (Krybus & Patzák, 2010). The meshing code is fully integrated into
the OOFEM package (Patzak & Bittnar, 2001). It uses an octree data sorting in order to speed-up the
search for non-Delaunay triangles during the mesh build-up phase.

3. Parallelization strategies

In general, several approaches to parallelization of Delaunay triangulation can be found in the
literature. A very common way is the divide-and-conquer strategy, first proposed by Guibas & Stolfi
(1985). It is based on recursive partitioning of the point sets and local triangulation of the subsets. The
global triangulation results from merging in the final phase. Regarding these facts, this algorithm
represents a naturally parallelizable approach. The points can be partitioned into certain regions upon
their position in space. Next, each partition is assigned to a processor which builds the local
triangulation. On the other hand, the merging phase is neither natural nor easy and in fact, it is the
bottleneck of the method. In addition, the merging phase must be done only by one processing element
with a considerable influence on the overall performance.

Other approaches are based on the concept of incremental insertion. To avoid multiple access to same
data structure, the whole set of points is first partitioned into sub-regions. A load balancing technique
must be employed in order to obtain reasonable speed up for general data (Chrischoides & Sukup,
1996). The Delaunay triangulation can be constructed incrementally by starting with the first triangle
and building-up the triangulation in direction given by the outer normal vector of every edge. The
“closest” point giving the “smallest” circumcircle with the edge is searched during the step (Cignoni et
al. 1993), see Fig. 1. Finally, the parallelization of incremental approaches can be done without
assigning regions to single processors. Kohout and Kolingerova (2003) developed an algorithm
working with a shared global list of points, which is accessed by particular CPUs.

Fig. 1: Incremental construction.

332

3.1. Shared memory systems

Regarding the spread of multiple core personal computers, the first idea was to reuse the existing code
and to improve it in order to allow its parallelization. The incremental algorithm is based on the
insertion of the points on by one into the current triangulation. In one step, all triangles violating the
Delaunay empty circle property are erased and the cavity is re-triangulated.

Considering shared memory parallel computer, the triangulation itself and its data structure is typically
managed in the shared memory. When individual points are concurrently inserted, overlapping of the
different cavities must be avoided in order to secure uniqueness of the triangulation or even crash of
the triangulating execution. For example, consider the dark grey filled triangle in Fig. 2, the Delaunay
property of which is affected by both inserted points, potentially leading to data access collision that
must be resolved. Moreover, sophisticated data structures, i.e., spatial containers are usually used to
allow fast search for non-Delaunay triangles. The point is that one must optimally ensure concurrent
data access without excessive data locking, which is otherwise needed to obtain correct triangulation.
Consequently, the scalability of the parallel code is affected in a negative way by these aspects.

Fig. 2: Triangulation of overlapping cavities.

3.2. Systems with distributed memory

The original Bowyer/Watson algorithm is not very suitable for parallelization on distributed systems.
In this case, each computational node manages the data stored in the own memory and any remote data
has to be obtained by an explicit communication, contrary to shared memory systems, where data are
globally accessible. However, the problem can be decomposed into sub-domains, meshed by single
CPUs. This allows performing triangulation in parallel, but there is a significant data transfer between
neighbouring domains to secure proper triangulation of the region borders. Every additional
communication leads to a lower parallel efficiency of the resulting code.

A smart solution was proposed by Cignoni et al. (1993). Referring to the general classification, it is an
incremental constructive algorithm. Contrary to the refining the triangulation by inserting points in
Bowyer’s /Watson’s approach, it starts with one triangle which is final taking into account the
resulting triangulation. The other triangles grow from the very first one, until all points are connected.
This approach is reused in parallel context, where the idea consists in triangulating the region borders
by the constructive algorithm first, so no more synchronization between processors is needed and until
merging individual processors can work independently. Every processing unit responsible for
triangulation of a certain area obtains a list of points contained and a “boundary” formed by
appropriate edges of truly Delaunay triangles on the border. This is illustrated on Fig. 3, showing sub-
domain boundary triangulation of rectangular domain, when four CPUs are considered. This step is
performed sequentially. Then all processors receive corresponding part of boundary triangulation, list
of particles inside each sub-region and start triangulation, which can be performed by any algorithm.

333

Fig. 3: Triangulation of regions’ borders.

4. Conclusions

In this work, Delaunay triangulation is used to construct a finite element mesh from particles
representing a Lagrangian formulated fluid problem. Two different approaches to parallelization of
Delaunay triangulation were described. The difficulties resulting from parallelization of the basic
sequential algorithm were discussed. An approach based on the incremental construction algorithm
suitable for the use on systems with distributed memory is proposed. Implementation of parallel
algorithms, both the original Bowyer/Watson algorithm as well as the incremental construction, is the
objective of present research. The task is not just the scalability of the algorithms but also their overall
efficiency in comparison to existing codes. Future work will be focused on examination of practical
application of meshing algorithm on fluid problems to answer the question whether a creating of a
completely new mesh from scratch is faster than improvement of the distorted one.

Acknowledgement

Financial support of Grant agency of Czech Republic under the project No. 103/09/H078 is gratefully
acknowledged.

References
Chrisochoides, N. & Sukup, F. (1996) Task parallel implementation of the Bowyer-Watson algorithm, in:

Proceedings of the Fifth International Conference on Numerical Grid Generation in Computational Fluid
Dynamic and Related Fields: 773—782.

Cignoni, P., Montani, C., Perego, R. & Scopigno, R. (1993) Parallel 3D Delaunay triangulation, Computer
Graphics Forum 12(3): 129-142.

Donea, J. & Huerta, A. (2004) Finite element methods for flow problems, J.Wiley, England.
Guibas, L.J. & Stolfi, J. (1985) Primitives for the manipulation of general subdivisions and the computation of

Voronoi diagrams, ACM Transactions on Graphics, Vol.4 (2): 74-123.
Kohout, J. & Kolingerová, I. (2003). Parallel Delaunay triangulation based on circum-circle criterion. In

Proceedings of the 19th Spring Conference on Computer Graphics: 73-81.
Krybus, D. & Patzák, B. (2010). On the efficient triangulation of random point sets. Computer and Experimental

Analysis of Civil Engineering Materials and their Multilayered Systems. CTU in Prague.
Patzak, B. & Bittnar, Z. (2001) Design of object oriented finite element code. Advances in Engineering Software

32(10-11): 759-767.
Shewchuck, J.R. (1996) Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. Applied

Computational Geometry: 203-222.

334

