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A THEORETICALLY CORRECT ALGORITHM FOR NONLINEAR 
CONSTITUTIVE MATRIX OF A SHELL 

I. Němec*, L. Weis* 

Abstract: A theoretically correct algorithm for nonlinear constitutive matrix of shell is introduced. The 
derivation starts with general formulas defining the constitutive matrices and it is applied to a specific 
problem of a shell respective to material nonlinearity. 
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1. Introduction 

The paper starts from the basic relation defining a tensor of tangent material stiffness (e.g. Belytschko, 
Liu & Moran, 2000). From this definition a theoretically correct algorithm of the tangent constitutive 
matrix of a shell is derived.  

2. Basic relations 

Let us start from the relation for the tangent material stiffness (1), which can be applied for a wide 
scale of materials, where the material modulus C  is the fourth order tensor, S  is the second Piola-
Kirchhoff stress tensor and E  is the Green-Lagrange strain tensor. 
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When proceeding to the Voigt notation, we introduce the materal stiffness matrix C , the matrix of the 
second Piola-Kirchhoff stress S  and the matrix of the Green-Lagrange strain E . Then the equation 
(3) can be rewritten as follows: 
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When a load increment is small enough then the constitutive relation (5) can be linearized.  

 δ δ= ⋅S C E  (6) 

Then we can write the following relation for particular members of the constitutive matrix C : 
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With regard to linearity of the relations (8) and (9), for determination of a members of the constitutive 
matrix we can choose an arbitrary value of jEδ , then also 1jEδ = . Then we can easily determine 

members of the constitutive matrix C  as pertinent components of the stress vector S  for the unit 
magnitude of the strain vector E . 
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 ( )1jij iC S Eδ δ= =

 (10) 

The similar way can be used for obtaining members of the constitutive matrix of a shell. Let us define 
the vector of internal forces of a shell (11), where particular internal forces are defined in a usual way 
as integral factors of stress components (7). 
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Let us define the strain vector of a shell in a usual way. 
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Similar relation as the equation (15) can be written also for the constitutive matrix of a shell:  
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To obtain particular members of the constitutive matrix of a shell, similar relation as in the equation 
(17) can be written: 
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With regard to linearity of the constitutive matrix in each iteration step, particular members of the 
constitutive matrix can be again determined as the pertinent components of the vector ( )s

iSδ  for unit 

value of the strain component ( )s
jEδ . 

3. Algorithm of the calculation of the constitutive matrix of a shell  

3.1. Layered shell element 

Inasmuch as the internal forces ( )s
iSδ  corresponding to the strain δ jE  must be obtained by numerical 

integration (Šolín, Segeth & Doležel 2004), the shell must be didvided along its thickness h  into 
layers. A layer i  is determined by its thickness ,lr ih  and by the location of its central surface ,lr iz . The 
pertinent integrals can be evaluated by Gauss quadrature formula which defines the location of 
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Gaussian points ,gp jz . This quadrature formula gives exact results for polynomials of the ( )2 1n − -th 
and lower order, where n  is the number of Gaussian points in each layer. 

 

Fig. 1: Division of element along its thickness h  into 4 layers with one Gaussian point in each layer 

, ,lr i gp jz z= . 

3.2. Bending and membrane members of the constitutive matrix 

A bending and membrane members of the constitutive matrix of a shell ( )sC  are calculated from the 
constitutive matrices of layers ,lr ic  (11) transformed into such coordinate system in which the shell 

constitutive matrix ( )sC  should be assembled. 

 ( )
, , , , , ,

T1 1
, , , , , , , ,

, , , , , ,

lr i xxxx lr i xxyy lr i xxxy
local

lr i c lr i c lr i yyxx lr i yyyy lr i yyxy

lr i xyxx lr i xyyy lr i xyxy

c c c
c c c
c c c

− −

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

c T c T  (19) 

For assemblage of the constitutive matrix ( )sC  the equation (12) shall be used. When chosing the first 
member xκ  of the deformation vector ( )sE  equal to one, and the remaining members of this vector are 

zero, then the vector of internal forces ( )sS  is equal to the first column of the constitutive matrix ( )sC . 
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This algorithm will be used for evaluating the first three and the last three columns of the constitutive 
matrix ( )sC . The chosen vector of deformation ( )sE  containing only one nonzero member i.e. 

curvature 1xκ =  will yield the strain in the layers as follows. 

 , , , , , , , , ,lr i x x x lr i lr i y y y lr i lr i xy xy xy lr iz z zε ε κ ε ε κ γ γ κ= + = + = +  (21) 

A constitutive matrix of a layer ,lr ic  obtained from a nonlinear calculation will be multiplied by the 

strain vector ,lr iε  to obtain the pertinent stress vector. 

 , , ,lr i lr i lr i=σ c ε  (22) 
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Then the stress ,vr iσ  in each layer will be integrated related to the central surface of the shell by the 

realtion (7). The resulting vector of the internal forces ( )sS  will be substituted into the first column of 

the constitutive matrix ( )sC . This procedure will be repeated also for the remaining columns of the 
constitutive matrix except the fourth a fifth one, which will be evaluated by a different procedure. 

3.3. Shear members of the shell constitutive matrix 

To complete all the members of the constitutive matrix ( )sC  it remains to determine the shear 
stiffnesses 44C  in the x  direction and 55C  in the direction.The 44C  and 55C  stiffnesses will be 
calculated by the relations (23) that were derived from the demand of the equivalence of the virtual 
work of the 3D and the 2D models. 
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, ,lr i xE , , ,lr i yE , , ,lr i xG  and , ,lr i yG  are the Young and shear modules of each layer.  

4. Conclusions 

The paper has shown a theoretically correct and practically useful algorithm for calculation of tangent 
constitutive matrix of a shell. This algorithm is applied in the RFEM program for finite element 
analysis of structures (Němec et al., 2010).  
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