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Abstract:  The mathematical model of a thin cylindrical shell according to Timoshenko and Love 
bending theory contains derivatives of generalized internal forces and deformation components. However 
these derivatives are not defined at such points between ends of the shell where a concentrated loading or 
an internal support or coupling is located. In order that the mathematical model of a thin cylindrical shell 
subjected to axisymmetric loading may hold true at the points of discontinuity mentioned, which are 
common in calculating experience, we have used the distributional derivative for the unknown quantities, 
and developed a generalized mathematical model in the form of a system of ordinary differential 
equations (SODE). We have found the general solution to the SODE by using the Laplace transform 
method and symbolic programming approach. The solution found is a generalization of Krylov functions 
method. 
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1. Introduction 

Solving analytically a thin cylindrical shell subjected to an axisymmetric bending with discontinuous 
loading, support or geometry, we at first divide it into segments without discontinuities. Then, we find 
continuous solutions with integration constants for each shell segment separately. Finally, we 
determine integration constants using boundary conditions and continuity conditions among shell 
segments. 

Applying distributional derivative (Schwartz, 1966) for the transverse shear force per unit length, the 
axial bending moment per unit length, and for the angle of rotation of a middle-surface normal in a 
meridian plane, we can derive a generalized mathematical model of the thin-walled cylindrical shell 
with discontinuities in loading, support and geometry that may be solved like only one differential 
problem without dividing shells into cylindrical segments, and without using continuity conditions.  

2. The classical mathematical model of an axisymmetric bending of the thin cylindrical shell 

According to the Love-Timoshenko shell bending theory (Love, 1944; Timoshenko, 1959), a system 
of differential equations describing axisymmetric bending of thin cylindrical shells may be composed 
of four ordinary differential equations of the first order (Höschl, 1971; Markuš, 1982; Němec et al., 
1989) as follows 
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where 
T(x) transverse shear force per unit length, 

( )Ma x  axial bending moment per unit length, 

( )φ x  angle of rotation of a middle-surface normal in a meridian plane, 

w(x) radial displacement component, 

( )pn x  surface loading in normal direction to the middle surface, 

( )Nt x  membrane normal force per unit length in the circumferential direction, 

r radius of the middle surface of the shell, 
D shell wall bending stiffness, 
x axial coordinate. 

Equations (1), (2) are equilibrium conditions of a shell element cut out in the undeformed shape. The 
equation (3) expresses relationship between the axial bending moment per unit length and a middle-
surface curvature change supposing (5). Membrane normal force per unit length acting in the 
circumferential direction may be expressed as follows 

                                                            = ( )Nt x  + 
E ( )w x h
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where 

E Young’s modulus, 
μ Poisson’s ratio, 
h thickness of the shell wall, 
Na axial membrane normal force per unit length. 

3. The generalized mathematical model of axisymmetric bending of the thin cylindrical shell 

Concentrated radial circumferential-line force loadings per unit length and concentrated supports 
along circumferential lines situated between ends of the shell may cause jump discontinuities of the 
transverse shear force per unit length. Concentrated circumferential-line moment loadings placed 
between ends of the shell may cause jump discontinuities of the bending moments per unit length. 
Circumferential hinges connecting cylindrical shell segments may cause jump discontinuities of the 
angle of rotation of the middle-surface normal in a meridian plane.  

Classical derivatives (1) to (3) do not hold true at points of the jump discontinuities mentioned because 
quantities T(x), Ma(x) and ( )φ x were supposed to be continuous. In order to remove this inconsistency, 
we have used the distributional derivative (Kanwal, 2004; Štěpánek, 2001) for discontinuous unknown 
quantities T(x), Ma(x), ( )φ x , and regarding (6), we have derived the following generalized 
mathematical model 
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where 

Fi i-th concentrated radial circumferential-line force loading per unit length, 
Ri i-th concentrated radial circumferential-line reaction force per unit length, 
Ci i-th concentrated circumferential-line moment loading per unit length, 
Φi magnitude of a jump discontinuity of ( )φ x at i-th circumferential hinge connection of 

shell segments, 
n1 number of concentrated radial circumferential-line force loadings, 
n2 number of concentrated radial circumferential-line reaction forces, 
n3 number of concentrated circumferential-line moment loadings, 
n4 number of circumferential hinge connections of cylindrical shell segments, 

Dirac(x-x0) Dirac singular distribution moved to x = x0 , x0  >0 . 

4. The general solution to the generalized system of differential equations (7) to (10) 

First, we introduce an auxiliary constant as follows 
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where the shell wall bending stiffness is 
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Applying the Laplace transformation to equation (7) to (10) with respect to x, we obtain an algebraic 
system from which we can find the Laplace transforms of all four unknown quantities. Regarding the 
short extent of this paper, we have presented here only the Laplace transform of the radial 
displacement component as follows 
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where p is a complex variable. Converting the right side of (13) into partial fractions and applying the 
inverse Laplace transformation, we can express the radial displacement component as follows 
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5. Conclusions 

The contribution of this paper is that the generalized mathematical model of a thin cylindrical shell (7) 
to (10) holds true also for discontinuous graphs of the transverse shear force per unit length, the axial 
bending moment per unit length, and the angle of rotation of the middle-surface normal in a meridian 
plane caused by concentrated radial circumferential-line force loadings, concentrated supports along 
circumferential lines, concentrated circumferential-line moment loadings situated between ends of the 
shell, and circumferential hinges connecting cylindrical shell segments. The jump discontinuities of 
the unknown quantities have been expressed using Dirac singular distribution at the right side of Eq. 
(7) to (9). In order to determine magnitudes of the unknown jump discontinuities owing to the 
supports or hinges between ends of the shell, we have to use deformation conditions at points of these 
discontinuities. The general solution to the Eq. (7) to (10) has been computed using the Laplace 
transform method and symbolic programming approach, and has been partly presented in (14). The 
integration constants have got the form of initial parameters, and may be determined using boundary 
conditions. The jump discontinuities of the axisymmetric radial surface loading pn(x) may be 
expressed using Heaviside step function. 
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