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Abstract:  There are mechatronic applications, where a slender beam or plate is subjected to static 
magnetic force generated by an electromagnetic actuator consisting of a solenoid on a ferromagnetic 
core and a yoke, fixed to the beam. The static magnetic force, acting perpendicularly onto the beam, 
causes sag (downwards bending) of the beam. If the magnitude of the magnetic force surpasses some 
threshold value the beam is buckled. For small deflections the mathematical expression of the magnetic 
force can be approximated by a polynomial dependence on the distance to the magnet. It is important to 
analyse the nature of the sag and to determine the limits of the linear approximation, as well as the limits 
leading to the buckled state. The mathematical generalisation of the sag is valid for electrostatic force 
between planar electrodes, too. 
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1. Introduction 

There are mechatronic applications, where a slender beam or plate of length L is subjected to static 
magnetic force FM, generated by an electromagnetic actuator. The actuator consists of a solenoid 
wound on a pot-form ferromagnetic core and an armature (of length Lm << L), fixed to the beam at its 
midpoint (Fig. 1). The magnetic force FM is acting in the middle of the beam at distance L/2 from rigid 
fixtures on both ends and induces a sag (downwards deflection) zmax. If the intensity of the magnetic 
force FM exceeds certain threshold, the beam is permanently attracted to the end-stops (Bishop, 2002). 

   
Fig. 1: Schematics of the clamped-clamped beam with electromagnet (flux line is denoted dashed). 

2. Mathematical model of the equilibrium state 

The sag, zmax, at the beam midpoint due to the magnetic force FM is, according to (Rao, 2004) is:  
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where Eb is the modulus of elasticity (Young’s module) of the beam material and Ib is the second 
moment of inertia of the beam. This can be expressed as FM = zmax⋅kef, too. The theoretical value of the 
effective (lumped) stiffness kef of the clamped-clamped slender beam loaded at the midpoint is given 
as kef = 192⋅(EbIb)/L3 (e.g. (Rao, 2004)). 

Energizing the electromagnet with a steady state (DC) current I the magnitude of magnetic force FM is 
described by a scalar equation (Giurgiutiu & Lyshewski, 2009; Mayer & Ulrych, 2009):  
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The magnetic flux line is crossing twice the air gap, as shown in Fig. 1; μ0 is the permeability of air 
and lΦ is the flux line length in the ferromagnetic material of relative permeability μr. All parameters 
are known from vendor’s data, were measured or calculated from set-up geometry (Darula, 2008). 

The static equilibrium of the magnetic force FM(d, I) and the elastic force due to the beam deflection 
zmax⋅kef is described by Eq. (3). From the geometry follows: zmax = d0 – d, where d0 is the initial 
distance between electromagnet and the beam in de-energised state: 
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Let’s introduce a non-dimensional air gap width α:                  00 )( ddd −=α .                             (4) 

From physical point of view, the quantity α is non-negative and cannot be larger than one. If α = 1, 
beam is fully attracted by the electromagnet and would adhere to its poles.  

Further the middle magnetic flux line path of length lΦ will be considered. A more thorough magnetic 
field analysis by FEM approach would be beyond the scope of this contribution. The flux line length 
lΦ can be transformed into an equivalent half flux line length in air dFe, assuming linear properties of 
the core magnetic material: r2

1
Fe μΦ= ld . This is also a simplifying assumption, because for common 

magnetic materials B-H relation is non-linear (Giurgiutiu & Lyshewski, 2009; Mayer & Ulrych, 
2009). However, up to the saturation point, the concept of linear permeability can be used.  

Introducing α into Eq. (3) and using Eq. (2), the equilibrium equation is:  
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A relative measure δM = dFe/d0 can be introduced, while δM < 1, because μr > 1. Eq. (5) can be, after 
some algebraic manipulation, re-written as follows: 
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which calls for introduction of a normalised parameter β: β = α/(1+δM). Parameter β relates the air 
gap width change (d - d0) to the properties of the magnetic circuit δM, which are constant for the initial 
distance d0: Obviously β < 1. The physically feasible limit is β ≤ 1/(1+δM). Then Eq.(6a) is modified:  
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3. Solution of the equilibrium equation 

The Eq. (6b) can be solved for variable β(I) by an approximate approach using linear approximation, 
or in the exact way, applying analytical or numerical tools.  
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The denominator of the right hand side of Eq. (6b) can be approximated by a McLaurin’s series: 
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Just the first two terms of the expansion are considered, i.e. the linear approximation is used. After 
some algebra the formula for approximate calculation of β’ emerges: 
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The exact solution stems from the cubic equation obtained by rewriting Eq. (6b): 
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The solution of Eq. (9b) calls for the use of Cardano’s formulas for evaluation of cubic equations or 
rely on numerical solvers of algebraic equations, embedded in simulation programming environment, 
e.g. MATLAB®. The numerical solution leads, according to (Frank et al., 1973), to three different 
complex roots. In analogy to the quadratic equation there is a cubic discriminator D3, furnishing for 
D3 > 0 three real roots. This is the case here. By further analysis, two pairs of special real solutions of 
this cubic equation were found:  

- a pair for β = 0 and β = 1, which is a result for I = 0; 
- a pair for β = 1/3 and β = 4/3, which results if I attains a specific threshold value Icrit: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

M

ef2
crit 27

4
K
kI .                                                              (10) 

The threshold current Icrit is determined by the beam stiffness kef and the magnetic circuit properties 
KM. The value β = 4/3 corresponds to the triple real root at D3 = 0. For I > Icrit (when D3 < 0) there is 
only a single real root and two complex conjugate roots. 

Let us introduce a generalized variable qN, which is physically the current I normalized by the value of 
threshold current, qN = I/Icrit ≤ 1. Then Eqs. (8) and (9b) can be re-formulated and simplified: 
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For calculation of the exact solutions of β the MATLAB® function ‘roots’ was used, returning a 
complex three element vector for each qN value. Then the roots are ordered in ascending order and 
plotted in the form of line graphs (Fig. 2 – medium lines). Note, that this is not a plot of a function, 
because for any positive value of qN < 1 three different values are possible. The course of the 
approximate solution β’ (Eq. (11a)) is plotted as a thin line.  

Physically feasible values of numerical solution of the cubic Eq. (11b) are bound to the interval 
[0, β ≤ 1/(1+δM)] (white area in Fig. 2); hence the solutions above the bold limit (in the grey area) have 
no physical meaning (the beam would have to move within the electromagnetic core!). The dashed 
course is not physically realistic either, because this would assume that the elastic beam was buckled 
prior to energising the field. The physically plausible course is the lowest curve, starting at zero and 
reaching for  qN = 1 the value of β = 1/3. However, for the value qN = 1 two different solutions do 
exist: β = 1/3 and β = 4/3. This can by interpreted as the limit of stability: at the threshold current 
the beam buckles from the value of β = 1/3 to β = 1/(1+δM), as denoted by the red vertical line.  

If the current would revert from a value of I > Icrit the beam would follow the same trajectory, i.e. as 
soon as the value of qN drops below unity the beam, firstly adhering to the magnet core, would attain 
(after extinction of the transient phenomenon) a position corresponding to the β = 1/3.  
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Fig. 2: The solution of the cubic equation (11b) in the generalised coordinates (medium line) and  
of the approximate solution (11a) (thin). The non-realistic solutions are in the gray area.  

Measured data, after (Darula, 2008), are superimposed as black dots. 

From Fig. 2 it is seen that when qN < 0.80 there is no marked difference between the exact solution 
and the approximate solution. For a specific case of initial air-gap width d0 = 1.0 mm and magnetic 
circuit properties corresponding to δM = 0.15 for qN = 0.80 the difference between the exact solution 
β = 0.123 and the approximate solution β’ = 0.117 is -5 %, i.e. still technically acceptable.  

Preliminary experimental data, reported in (Darula, 2008) are superimposed onto the theoretical 
curves. The agreement is very good. Further experiments are under way to illustrate the deliberations. 

4. Practical conclusions 

The threshold value of the current I, Icrit is crucial for discrimination between bending and buckling of 
the elastic slender beam fixed on both ends. If a current larger than Icrit energises the solenoid the beam 
is permanently attracted to the electromagnet. This finding is supported by experimental results, too. 

The linearised form of the magnetic force in the force equilibrium expression (Eq. (8) or (11a)) can be 
used up to 80 % of the threshold current with an error not exceeding –5 %.  

For plane parallel electrodes driven by DC voltage U a similar formula to the Eq. (2) holds (δM = 0). 
Using the above generalisation, it follows that there exists a threshold voltage Ucrit, described by a 
similar formula to the formula (10), when the electrodes are completely attracted and short-circuited 
by the exerted electro static force acting perpendicular to the electrode planes.  
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