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MODELING OF STRENGTH OF ELASTIC REINFORCED 
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Abstract: In our contribution we will show how the Trefftz Radial Basis Functions (TRBF), i.e. RBF 
satisfying the governing equations can be used to increase the efficiency of modeling of such problems 
like composites reinforced by finite length fibres with large aspect ratio. Special attention will be given to 
application of the TRBF in the form of dipoles to the simulation of composite reinforced by fiber. The 
source functions (forces and dipoles) are continuously distributed along the fibre axis (i. e. outside of the 
domain, which is the domain of the matrix) and their intensities are modelled by 1D quadratic elements 
long the axis in order to satisfy continuity conditions between matrix and fibre. Obtained results are 
compared with FEM solutions obtained using own ICS FEM software. 
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1. Introduction 

The composites of the future reinforced by stiff particles or fibres are important materials possessing 
excellent mechanical and also thermal and electro-magnetic properties. Understanding the behaviour 
of composite materials and composite structures is essential for structural design (Kormaníková, 
2007). Reinforced composites contain huge number of reinforcing elements with large gradients in all 
fields in small parts of the matrix (in micro scale) around the reinforcing elements and accurate 
computational models are important for homogenization of material properties in macro scale 
(adjustment of local stiffness of such material) and for evaluation of strength of material. 
Micromechanics is essentially multiscale theory: Although a "representative volume element (RVE) 
can be viewed as a material point at the macro scale, it is associated with specific microstructure at the 
micro scale. It is well known that using volume element approximation such as FEM hundreds of 
elements are necessary to achieve required accuracy even for simple problem ((Filip et al., 2005) 
where 50 000 to 100 000 trilinear elements were used for problem containing one spherical particle in 
the matrix). In this paper we study the interaction of matrix-fiber-fiber for regular distributed straight 
in a patch inside matrix. 

2. Method of Continuous Source Functions 

A composite material with micro/nano structure with regularly distributed reinforcing fibres of unique 
dimension is to be modelled. Due to very small dimension of particles the stress and strain field can be 
considered to be homogeneous in the whole domain and all stresses and strains can be imagined split 
into a constant part, which introduces the state of the matrix without the stiffening and the local part, 
due to stiffening effect by the fibres. 

Let’s consider that the cross sectional dimensions of a fibre are much smaller than its length, the 
tensional stiffness of the fibre is much higher than the stiffness of matrix, the fibre is straight and ideal 
cohesion forces are assumed in the present model. Then the action of the fibre can be introduced by 
zero strains in longitudinal direction of the fibre boundary and zero difference of displacements in 
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directions perpendicular to the fibre axis. Aspect ratio (length to radius) of the fibre is considered to be 
very large (100:1, 1000:1 in examples used here). 

The classical Eshelby solution (Eshelby, 1961) was obtained for an elastic isotropic inclusion in an 
infinite elastic matrix. The treatment of the RVE as an infinite space implies that the inclusion 
concentration is dilute, and therefore, a direct application of these results to the case of finite inclusion 
concentration is only approximate. An improved model was suggested by (Mori & Tanaka, 1973). 
Their method also assumes the absence of all inhomogenities but it includes certain effect of the 
inhomogeneity by taking average strain in the matrix phase when all inhomogenities are present. 
Modification of existing homogenization methods via finite Eshelby tensors (Qu & Cherkaoui, 2006) 
provides significant improvement in predicting the behaviour of composites. In particular, the Hashin-
Shtrikman variational bounds are modified according to the prescribed boundary condition (Hashin & 
Shtrikman, 1963). Recently, (Sauer, et al.) solved the elastic field of an idealized, spherical, finite 
RVE embedded in an infinite, homogeneous, isotropic medium using Boundary Integral Equations 
(BIE). 

Because of large aspect ratio, continuity of strains between a matrix and a fibre can be simulated by 
continuously distributed source functions (forces, dipoles, dislocations, etc. (Blokh, 1964; Kachanov et 
al., 2003) as they are known from the potential theory) along the fibre axis (Fig. 1). The continuous 
source functions enable to simulate the continuity conditions with much reduced collocation points 
along the fibre boundary.  

All displacement, strain and stress fields will be split into a homogeneous part corresponding to 
constant stress-strain in the matrix without the reinforcement. For simplicity an isotropic material 
properties are assumed in this paper. 

 

 
Fig. 1: Continuous force/dipole model for the fiber reinforcing element. 

The field of displacements in an elastic continuum by a unit force acting in direction of the axis px is 
given by Kelvin solution 
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where i denotes the ix coordinate of the displacement, G and ν  are shear modulus and Poisson’s ratio 
of the material of the matrix (isotropic material is considered here), r is the distance between the 
source point s, where the force is acting with a field point t, where the displacement is introduced, i. e. 
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The summation convection over repeated indices acts and  
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is the directional derivative of radius vector r. 
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The displacement field of a dipole can be obtained from the displacement field of a force by 
differentiating it in the direction of the acting force, i.e. 
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The summation convection does not act over the repeated indices p here and in the following relations, 
too. Gradients of the displacement field are 
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and corresponding strain and stress fields are 
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3. Fiber-Reinforced Composites 

Two different problems were simulated in order to study the interaction of fibres with matrix and also 
the interaction of fibres: 1) a patch of non-overlaying rows of fibres as shown in Fig. 2 on the left and 
2) a patch of overlaying rows of fibres according to the Fig. 2 on the right. In the examples the 
modulus of elasticity of the matrix was E = 1000 and Poisson ratio ν = 0.3. The matrix was reinforced 
by a patch of straight rigid cylindrical fibres. The length of fibres was L = 1000 and L = 100 and the 
radius R = 1. The distance between fibres was ∆1 = ∆2 = ∆3 =16 and for longer fibres also ∆3 =200 in 
the fibre direction. The fibres in the patch contain approximately 1% of the volume of the composite 
material.  

The patches of fibres consisted of 
5 x 5 x 7 fibres in presented 
examples and "the fibre of 
interest" (FOI) were chosen in the 
middle to study the interaction of 
the fibre with matrix and with the 
other fibres as well. The domain is 
supposed to be loaded by far field 
stress σ33∞ = 10 in the direction 
(x3), which is also parallel to 
fibres’ axes. The model of the 

fibre used in these examples contained less than 100 unknown parameters (intensities of the source 
functions) and about 200 collocation points. The problem is solved by LS method. 

Fig. 3: Local displacements along a fibre. Fig. 4: Errors in local displacements along fibre. 
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Fig. 2: 3D patches of regularly distributed fibres. 
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Figs. 3 to 5 contain the local fields in the vicinity 
of the fibre of interest (coordinates origin is in the 
middle of the fibre) for length fiber (L = 1000 R) 
with overlay and the distance ∆3 =200 R. 
Displacement differences of the points on the 
fibre boundary were linear along the fibre (Fig. 3). 
As the LS method was used in the procedure the 
errors were examined as shown in Fig. 4. The 
circles denote nodal points in distributed source 
functions (fictive forces of the Kelvin functions 
and dipoles) along the fibre axis. Two different 
models were used: with discontinuities (A - red) 
by the ends of neighbour fibres where the fields 
have large gradients and with continuous 
distribution of source functions (B - blue) along 
whole fibre axis.  
  

4. Conclusions 

The MCSF enables to simulate both the interaction of matrix with stiff reinforcing fibres and the fibre 
with other fibres very effectively. Computational experiment have shown that very large gradients in 
all fields occur not only in the end parts of fibres, but also in the points close to the ends of 
neighbouring fibres, more precisely in points on the line perpendicular to the axis of the neighbouring 
fibre. The large gradients in the end parts of fibres influence also the numerical models. If polynomial 
interpolation of source functions is chosen in the models then finer division of the continuous function 
is to be defined in these parts. 
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Fig. 5: Shear stress parallel to fibre axis.  
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