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Abstract: Experimental and numerical model of a uni-directionally driven pendulum-based tuned mass
damper is presented in the paper. Stability of the motion in a vertical plane is analysed in the theoretically
predicted resonance region. For the experimental part, special experimental frame is used, allowing inde-
pendent change of linear viscous damping in the both perpendicular directions. The introduced damping
is. Mathematical model respects the non-linear character of the pendulum and allows to introduce asym-
metrical damping. Sensitivity of the resonance behaviour on the change of damping in both directions is
studied and commented in the paper. The stability of the system is analysed experimentally and compared
with numerical and theoretical results.
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1. Introduction

A typical tuned mass damper is a pendulum. This low cost passive device used at tall masts and towers
is very popular for its reliability and simple maintenance, see e.g. (Haxton, 1974; Náprstek and Pirner,
2002). However, dynamic behaviour of such substructure is significantly more complex than it is sup-
posed by widely used simple linear single degree-of-freedom (SDOF) models working in one vertical
plane. Such a conventional linear model is satisfactory only if the amplitude of kinematic excitation at
the suspension point is very small and if its frequency remains outside a resonance frequency domain,
which is possible only at the cost of lower efficiency of the damper. To improve the design of pendulum,
a spherical pendulum should be considered.

The detailed review of the topic has been published by the authors recently in (Pospı́šil et al., 2011).
The mathematical model follows the approach presented in (Náprstek and Fischer, 2009). However,
some historical remarks is worth to mention.

Auto-parametric systems have been intensively studied for the last four decades. The horizontally
forced spherical pendulum was first studied by Miles (1962), who considered this problem of the stabil-
ity of planar oscillations with respect to non-planar perturbations for small amplitude forcing in a neigh-
bourhood of resonance using truncated equations. He found that planar solutions become unstable with
respect to non-planar perturbations in particular parameter ranges and that there are stable non-planar
oscillations. A more detailed later study (Miles, 1984) analysed a number of bifurcation diagrams for
planar and non-planar motions as well as chaotic motion. Some experimental results have been presented
by (Triton, 1986), where a good agreement with the theoretical results is demonstrated.

The present article exploits the analytical approach to the subject described in (Náprstek and Fischer,
2009) and compares it with some experimental findings. The movement of the pendulum is described
in two coordinates θ, ϕ on a spherical surface respecting the non-linear interaction of both components,
or in two cartesian coordinates ξ, ζ, representing the projection of the pendulums bob to the x, y plane.
It means that the pendulum response is described by a system of two second-order non-linear ordinary
differential equations. Interaction of both equations follows from non-linear terms only.

In the experimental as well in numerical approach the uni-directional harmonic excitation is sup-
posed. If the excitation frequency belongs to the resonance region, post-critical states can emerge. These
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states are characterized by either highly increased in-plane response, or by more or less complicated
space trajectories of various types. The shape of this motion stabilizes for increasing frequency in a
nearly elliptic “horizontal” trajectory. Above the upper limit of the resonance domain an existence of a
stable deterministic solution in the vertical plane resumes. The existence and stability level of individual
solutions or response types are dependent on pendulum geometry and excitation structure. It is obvious
that such a type of response destroys effectiveness of the tuned mass damper.

In this article, a pendulum is examined using a specially developed experimental rig. It contains
kinematically driven pendulum suspended from the Cardan joint. The damping can be arbitrarily adjusted
by means of two independent magnetic units attached to the frame and to the supporting axes of rotation.
These units are able to reproduce the linear viscous damping for both degrees of freedom. The stability
of the system is analysed experimentally and numerically for several values of the damping.

2. Mathematical model

The spherical pendulum will be considered as a strongly non-linear dynamic system with kinematic
external excitation in the suspension point, see Fig. 1.

Fig. 1: Outline of the idealized model

The mathematical model follows from the balance of kinetic and potential energies. Using Hamil-
ton’s principle, an approximate Lagrangian system in x, y-coordinates for components ξ, ζ can be ob-
tained (see detailed derivation in (Náprstek and Fischer, 2009)):
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The viscous damping has been introduced in a form of the Rayleigh function and denoted as βξ, βζ in
(1). Accuracy of the mathematical model depends on the amplitude of the response, as the assumption of
the small angle θ has been adopted. Natural frequency ω0 of the corresponding linear pendulum is given
by ω2

0 = g/r, where r is the suspension length of the pendulum and g is the gravitational acceleration.
Neglecting the non-linear terms in (1), the system would broke up into two independent linear equations.
Thus, the interaction of both the equations is given by non-linear terms only.

As the harmonic excitation a(t) = a0 sin(ωt) acts in the ξ direction only, the basic type of motion
takes course in the vertical (xz)-plane if the time history starts under homogeneous initial conditions.
With increasing amplitude of the excitation a(t), the auto-parametric stability loss can occur and the
post-critical state of the auto-parametric resonance arises.

3. Experimetnal analysis

The stability problems are, in general, very sensitive to boundary and initial conditions. Therefore,
any simulation machine and its mechanical parts needs to be well prepared and manufactured to avoid
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creating parasitical influences, which are very difficult to eliminate. This applies not only to a compli-
cated kinematic mechanism but also to the relatively simple spherical pendulum. The authors use an
experimental pendulum, designed to comply the assumptions of the theoretical and numerical model.
This pendulum is suspended from Cardan joint attached to a trolley moving on two parallel miniature
rails. Two magneto-dynamic units allow to introduce viscous damping in the practically full range from
(almost) zero to the critical value. For detail of the set-up see (Pospı́šil et al., 2011).

The length of the pendulum was 0.41 m, mass of its bob was significantly greater than it was in the
previous experiments to increase inertia and thus to lower the minimal relative damping. Fundamental
eigenfrequency of the pendulum was measured as f0 = 0.76 Hz, i.e. ω0 = 4.8rad · s−1. Response
of the pendulum was measured for excitation frequencies ranging from fl = 0.73 Hz to fu = 0.97Hz
with increments ∆f = 0.002 Hz, (i.e. range ω = 4.587 . . . 6.095rad · s−1). To cover the full range
of the resonance interval, the each sweep was started for excitation frequency slightly higher than the
eigenfrequency of the pendulum and small initial disturbance was given to the pendulum. Then was the
excitation frequency gradually changed in small increments up or down to cover the whole frequency
range. Each frequency was kept constant for three minutes and angles of the pendulum were measured
and recorded. To eliminate the transition effects, only the last minute of each record was taken into
account in the post-processing.

Figure 2 shows maximal and minimal measured amplitudes (◦) depending on the excitation frequency
(ω, rad.s−1). Responses for several values of damping coefficients (βξ = βζ = 0.04, . . . 1.2) are shown
in the individual rows. The alongside ξ and transversal ζ components are in the left and right hand
columns respectively. Three curves are present in each plot, they represent maximal, minimal and mean
values of the amplitudes. When all three curves coincide, the response of the pendulum is harmonic.
If the minimal and maximal curve form a stripe, multi-harmonic or chaotic type of the response takes
place. However, this simple criterion is not able to distinguish chaotic and multi-harmonic response.

4. Numerical analysis

In order to get an overview concerning the system behaviour in the vicinity of resonance frequency
intervals several numerical analyses using the governing differential system (1) have been performed.
For numerical simulation, default numerical procedure NDSolve from package Wolfram Mathematica
and M = 2 variant of implicit Gear method (routine gear2) from the GNU Scientific Software Library
(Galassi et al., 2009) have proved themselves to be the most stable and efficient. Adaptive step control
is used in both numerical methods. Due to a high number of necessary simulation to obtain a single
resonance curve, the parallel algorithm has been developed to exploit the computational power of the
2 cpu / 16-thread computer.

To assess the correspondence of numerical simulation and experimental results, let us compare the
Figs 2 and 3. The both figures show the resonance curves, obtained form measured and computed data
respectively. The qualitative behaviour in the lower end of the resonance interval is rather comparable.
On the other hand, a quite significant difference can be seen in the upper part of the studied frequency
interval, namely for low damping coefficients βξ = βζ ∈ {0.04, 0.05}. It appears, that the experimental
pendulum was able to follow the (less stable) upper branch of the solution during the sweep-up simulation
much better than it was the numerical solution. This behaviour is also different from the measurements
published by the authors in (Pospı́šil et al., 2011). It seems that the only explanation for such a ”stability
on upper branch” is the increased mass of the bob of the pendulum. It is worth to mention, that after some
change in the excitation or other noticeable artificial disturbance the pendulum jumped to the standard
(lower and planar) stable branch of the response.

It is necessary to confess, that quantitative agreement between numerical simulation and experimen-
tal results for a single set of input parameters and a single time history was not so good. Even for
carefully selected initial conditions the numerical model was not able to follow the trajectory of the ex-
perimental pendulum. This behaviour is not surprising, as the mathematical model (1) has been derived
with the assumption of small amplitude of the response. Moreover, the significant dependence of instant
frequency of the response on its instant amplitude is clearly seen from the experimental data.
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4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0

10
20
30
40
50 ΒΞ =0.04

Ω

Ξ

4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0

10
20
30
40
50 ΒΖ =0.04

Ω

Ζ

4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0

10
20
30
40
50 ΒΞ =0.05

Ω

Ξ

4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0

10
20
30
40
50 ΒΖ =0.05

Ω

Ζ

4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0

10
20
30
40
50 ΒΞ =0.06

Ω

Ξ

4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0

10
20
30
40
50 ΒΖ =0.06

Ω

Ζ

4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0

10
20
30
40
50 ΒΞ =0.08

Ω

Ξ

4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0

10
20
30
40
50 ΒΖ =0.08

Ω

Ζ

4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0

10
20
30
40
50 ΒΞ =0.1

Ω

Ξ

4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0

10
20
30
40
50 ΒΖ =0.1

Ω

Ζ

4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0

10
20
30
40
50 ΒΞ =0.12

Ω

Ξ

4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0

10
20
30
40
50 ΒΖ =0.12

Ω

Ζ

Fig. 2: Experimental pendulum: measured amplitudes (·◦) of the response depending on excitation fre-
quencies ω = 4.6 . . . 6.1 rad.s−1 for several values of damping coefficients, same in the both directions.
Longitudinal movement (ξ) is on the left hand side, transversal response (ζ) on the right hand side. For
each plot, maximal, minimal and mean amplitudes are shown.

Having roughly assessed the validity of the numerical model introduced by Eq. (1) let us study the
influence of individual damping coefficients on the overall response of the system in the both directions.
The figure 4 shows selected results obtained during the extensive parametric study. For the interval of
excitation frequencies ω ∈ (4.6, 6.1) and the values of damping coefficients βξ, βζ ∈ (0.005, 0.12),
the equation (1) was repeatedly integrated and the maximal amplitudes in both directions was recorded.
There are 10 pairs of colour plots in figure 4. Each pair corresponds to a single excitation frequency ω ∈
{4.7, 4.72, . . . , 4.88} to cover area surrounding the eigenfrequency of the pendulum. In each pair, left
plot shows response in longitudinal direction (ξ) and right plot corresponds to the transversal direction.
Values on the horizontal axis of each plot represent the damping coefficients βξ, whereas the vertical
axis stands in values of the damping coefficients βζ . Finally, the colour map shows the distribution of
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Fig. 3: Numerical integration: computed amplitudes (·◦) of the response depending on excitation fre-
quencies ω = 4.6 . . . 6.1 rad.s−1 for several values of damping coefficients, same in the both directions.
Longitudinal movement (ξ) is on the left hand side, transversal response (ζ) on the right hand side. For
each plot, maximal, minimal and mean amplitudes are shown. Parameters of the model were chosen to
meet geometrical properties of the experimental set-up.

the maximal amplitudes of xi and ζ in the left and right plot respectively. The dark blue colour indicates
negligible or small amplitude of the response, whereas bright yellow and brown colours show the high
response. The black dots in the each plot point at the discrete values of β used in simulation.

Several remarks can arise from observation of the figure 4. Firstly, it appears, that the presence of the
spatial character of the system response does not depend significantly on the value of damping coefficient
βζ (transversal motion). Similarly, the overall amplitude of the response seems to be influenced mostly
by βξ (longitudinal motion) and far less by βζ . Secondly, the spatial response in the lower part of the
resonance interval have higher amplitudes, but can be suppressed by smaller values of damping βξ. The
lower amplitudes which appear in the upper part of the resonance interval need higher damping βξ to be
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Fig. 4: Maximal amplitude of the response depending on the values of damping coefficients in the both
directions βξ, βζ ∈ (0.005, 0.12) for excitation frequencies ω =∈ {4.7, 4.72, . . . , 4.88}. For each
frequency the left plot shows response in longitudinal direction (ξ) and right plot corresponds to the
transversal direction.

wiped off. Third, it is not always true, that the higher damping (in transversal direction) automatically
means the lower response (cf. ξ plots for ω > 4.78 in fig. 4).

There are some problematic points in the presented study. Firstly, the complete bunch of simulation
was performed with fixed initial conditions, more or less randomly chosen. Thus, this numerical analysis
was not able to cover up the variety of possible stable branches. Secondly, remarks from the previous
paragraph can be roughly explained form the structure of the equation (1). It is not clear, whether they
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represent the behaviour of a real pendulum, or just its mathematical idealization. The further experimen-
tal study should cover up at least some cases of unsymmetrical damping.

5. Conclusions

It has been shown before that widely used linear model of the damping pendulum is acceptable only
in a very limited extent of parameters concerning pendulum characteristics and excitation properties.
In this work, two degrees of freedom experimental and non-linear numerical models was studied. The
harmonic kinematic external excitation in the suspension point was applied in both cases. The viscous
damping was varied in the analysis, independently in the numerical model and jointly in the present set
of experimental results.

Various types of the response of the pendulum have been encountered for excitation frequency in the
resonance frequency interval: in-plane, periodic or chaotic. The character of the response depends on
structural parameters: frequency and amplitude of excitation, geometry of the pendulum and damping
coefficients. It has been shown, that initiation of the spatial response is more sensitive to damping in
the direction of excitation, whereas even a relatively high damping in the transversal direction does not
prevent the spatial movement.

Dependence of the amplitude of the experimental pendulum on the values of damping is not surpris-
ing. On the other hand, reasonable correspondence between experimental measurements and numerical
model has been confirmed. The qualitative correlation of numerical/experimental results has been ob-
served. However, the assumption of small amplitude depreciate the quantitative relation of numerical and
experimental results. For better results, the numerical model should be adopted to comprise dependence
of instantaneous amplitude and frequency of the pendulum.

There are some open problems yet. The numerical analysis of the influence of damping should cover
the additional (multiple) branches of the stable motion. The next experiments are necessary to validate
the unsymmetrical influence of the values of damping coefficients.

From the practical point of view, it is highly recommended to design the damping pendulum absorber
in such a way that any occurrence of non-linear resonance effects is avoided. If not, negative influence
of the pendulum in the resonance domain is to be expected in both along-wind as well as in cross-
wind directions. The experiments will continue with the application of more excitation amplitudes and
damping values varying in both principal vibration planes.
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