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Abstract: The paper is concerned with a novel algorithm for solution to contact problems stemming from
the TFETI (Total Finite Element Tearing and Interconnecting) domain decomposition method. The TFETI
method is based on idea that the compatibility between non-overlapping sub-domains, into which the orig-
inal domain is partitioned, is enforced by the Lagrange multipliers. The distinctive feature of the TFETI
consists in the fact that the method also enforces the Dirichlet boundary conditions by means of the La-
grange multipliers. The TFETI based technique converts the original contact problem to the quadratic
programming one with the equalities and simple bound constraints. Our new algorithm exhibits both paral-
lel and numerical scalabilities so that it enables us to effectively solve steady-state problems of deformable
bodies undergoing contact, geometric and material non-linear effects. In this paper we propose algorithm
with nested iteration strategy, where its inner part consists of a new version of our previously developed
MPRGP and SMALBE algorithms and the outer loop iterates on the geometric and material non-linearities.
Numerical experiments include solutions to steady-state problems with non-linear effects and their results
document that the proposed algorithms are robust, highly accurate and exhibit both parallel and numerical
scalabilities.

Keywords: Contact non-linearity, Geometric non-linearity, Material non-li-nearity, Domain decompo-
sition, Scalability.

1. Introduction

Dostál et al. analysed in (1) problem of frictionless contact problem between solid bodies, while they
considered both geometrically and materially linear cases. Therein they suggested a new in a sense
optimal version of their own previously developed algorithm based on TFETI (Total Finite Element
Tearing and Interconnecting) domain decomposition method. The goal of this paper is to apply this new
algorithm to the contact problems accompanied by both geometric and material non-linear phenomena,
and to show that it can yield, even under these conditions, good results.

The FETI domain decomposition method was introduced by Farhat and Roux (2) as a parallel finite
element solver for the self-adjoint elliptic partial differential equations. Its key idea is a decomposition
of the spatial domain into non-overlapping sub-domains that are ‘glued’ by Lagrange multipliers, so
that, after eliminating the primal variables, or displacements, the original problem is reduced to a small,
relatively well conditioned, typically equality constrained quadratic programming problem that is to be
solved iteratively. Later Farhat, Mandel and Roux (3) modified the basic FETI algorithm so that they
were able to prove its numerical scalability, i.e. asymptotically linear complexity.

The partition of the original domain into sub-domains usually generates some ‘floating’ sub-domains
with not enough prescribed displacements, so that their stiffness matrices are singular in steady-state
cases and implementation of FETI then includes the computation of their kernels. However, stable
evaluation of the bases of the kernels, though theoretically clear in exact arithmetic context, is tricky in
the presence of the round-off errors. To overcome this difficulty, Dostál et al. (4) suggested enforcement
of all the Dirichlet boundary conditions by the Lagrange multipliers so that all the sub-domains were
treated as totally unconstrained. This version of FETI is referred to as the Total FETI (TFETI). Since the
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kernels of stiffness matrices of all the sub-domains are the same and known beforehand, this approach
removed the problems with identification of these kernels.

Even though the FETI class methods were originally developed for numerical solution to linear
elliptic partial differential equations, it turned out that they were even more successful for the solution
to contact problems. The reason is that any FETI method reduces in effect for free the more general
inequalities introducing the conditions of non-penetration of bodies to the bound constraints. The FETI
based algorithm for contact problems was proposed by Dostál et al. in (5). The numerical scalability of
this algorithm was demonstrated by numerical experiments.

The organisation of the paper is as follows. Section 2. introduces the TFETI for contact problems.
Section 3. is briefly concerned with a new version of SMALBE and MPRGP, which are the algorithms
stemming from the TFETI. The concepts of numerical and parallel scalabilities are explained in Section
4.. Section 5. outlines the overall computational strategy and we present there an algorithm that enables
TFETI to be applied to solution to the contact, geometric and material non-linear effects. Section 6.
shows results of numerical experiments and Section 7. concludes the paper.

2. Problem Formulation

For simplicity, let us consider a system of two solid deformable bodies in contact which occupy in
reference configuration domain Ω = Ωm ∪ Ωs, where m denotes master body and s stands for slave
body. Assume that their boundaries are subdivided into three disjoint parts Γi

u, Γi
f , and Γi

c, i = m, s,
with prescribed Dirichlet, Neumann, and potential contact conditions, respectively.

The strong version of governing equations of the static equilibrium is as follows

σij(u),j = fi in Ω, (1)

where σ, u, and f denote stress tensor, displacement vector and loading vector, respectively. The Dirich-
let and Neumann boundary conditions are, respectively, as reads

u = 0 on Γu, (2)

σij(u) · νj = pi on Γf . (3)

The variational formulation is to be obtained if we consider the constrained minimisation problem

u ∈ K, J (u) ≤ J (v) ∀v ∈ K, (4)

where K is a non-empty, closed, convex set of all feasible displacements. The quadratic functional

J (v) =
1

2
a(v,v)− `(v) (5)

is generated by a self-adjoint, positive definite bilinear form

a(v,w) =
∑

i∈{s,m}

∫

Ωi

σ(vi) : ε(wi)dx (6)

and accounts for internal forces. The linear functional

`(v) =
∑

i∈{s,m}

∫

Ωi

f · vdx+
∑

i∈{s,m}

∫ f

Γi

p · vdx (7)

accounts for the volumetric forces and tractions on the Neumann boundary.

To apply the TFETI domain decomposition, we tear each body from the part of the boundary with
the prescribed Dirichlet boundary conditions, decompose each body into sub-domains and introduce
new connecting conditions on the fictitious intersubdomain boundaries and on boundaries with imposed

204 Engineering Mechanics 2012, #12



Dirichlet conditions. The connecting conditions requires continuity of the displacements and of their
normal derivatives across the intersubdomain boundaries.

Applying the standard finite element procedures while in addition considering TFETI method, we
can express the governing equations of a contact problem in discretised form as follows

Ku = f −B>I λI −B>EλE , (8a)
BIu ≤ cI , (8b)
BEu = cE , (8c)

where K denotes a stiffness matrix with sparse positive semidefinite diagonal blocks corresponding
to individual sub-domains. In accordance with the TFETI method, the kernels of all the sub-domains
are the same and known beforehand. The matrix BI and the vector cI introduce the linearised non-
interpenetration conditions. Similarly the matrix BE and the vector cE enforce the prescribed displace-
ments along the part of the boundary with the Dirichlet conditions. λI and λE stand for the components
of the vector of Lagrangean multipliers, while we shall use

λ =

[
λI

λE

]
, B =

[
BI

BE

]
and c =

[
cI
cE

]
.

Eqn. (8a) has a solution iff f −B>λ belongs to the range of K and therefore the following relation-
ship holds

R>(f −B> λ) = 0, (9)

where R denotes the full rank matrix with columns spanning the kernel of K. Since all the sub-domains
are totally unconstrained, the kernels of the sub-domains are known beforehand and are to be assembled
directly.

It is necessary to eliminate the primal variable u from eqn. (8a). It can easily be verified that if u is
a solution to eqn. (8a), then there exists such a vector α that

u = K†(f −B
>
λ) + Rα, (10)

where K† is any symmetric positive definite matrix satisfying the first Moore–Penrose condition KK†K = K,
or it is the {1}-inverse.

Substituting eqn. (10) into eqn. (8a), we get the following minimisation problem

min
1

2
λ>BK†B

>
λ− λ>BK†f s. t. λI ≥ 0 and R>(f −B

>
λ) = 0. (11)

Let us now introduce the standard FETI notations

F = BK†B>, G = R>B>, e = R>f , d = BK†f . (12)

After some algebraic manipulation, we obtain the following formulation

min
1

2
λ>PFPλ− λ>Pd s. t. λI ≥ 0 and Gλ = 0, (13)

where
P = I−Q and Q = G>(GG>)−1G (14)

stand for the orthogonal projectors on the kernel of G and the range of G>, respectively. The point of
the last step is to introduce preconditioning by the natural coarse grid projector.

The problem (13) is to be solved efficiently by the algorithms presented in the following section.
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3. MPRGP and SMALBE Algorithms

We have shown that application of the TFETI methodology to the contact problems converts the orig-
inal problem to the quadratic programming problem with bound and equality constraints and well-
conditioned regular part of the Hessian matrix. Such problems are to be solved very efficiently by
the recently proposed algorithms. A unique and qualitatively new feature of these algorithms is the rate
of convergence in the bounds on the regular part of the Hessian, independent of the representation of
constraints. See (1) for details.

The problem (13) is first reduced by Semi-Monotonic Augmented Lagran-geans with Bound and
Equality constraints (SMALBE) method to the se-quence of bound constrained quadratic programming
problems. SMALBE accepts inexact solutions of auxiliary bound constrained problems solved approx-
imately in the inner loop until the norm of the projected gradient is proportional to the feasibility error,
and updates the regularisation parameter until the value of the Lagrangian increases. These auxiliary
problems are to be solved efficiently by the Modified Proportioning with Reduced Gradient Projection
(MPRGP) method in the inner loop. It was proved by Dostál and Horák (6) that application of FETI or
TFETI with natural coarse grid preconditioning to a contact problem can be combined with SMALBE
and MPRGP to obtain algorithm with asymptotically linear, i.e. optimal, complexity. A unique feature
of MPRGP is the rate of convergence which is independent of the inequality constraints. Moreover, the
algorithm enjoys the finite termination property even for dual degenerate problems, so that it does not
suffer from oscillations often attributed to this type of algorithms.

Detailed description of these algorithms is beyond the scope of this paper.

4. Numerical and Parallel Scalabilities

The performance of a domain decomposition based iterative method depends on two important proper-
ties, namely numerical and parallel scalabilities. Such a method is said to be numerically scalable if the
condition number of the problem does not grow or grows weakly with the ratio of the sub-domain size
and the mesh size. The parallel scalability represents ability of an algorithm to achieve larger speed-ups
for a larger number of processes.

5. Non-linear Algorithm

The primary interest of this work is the development of effective strategy for fully non-linear problems,
where, in addition to the contact interaction, the kinematics of the body system are not confined to small
strains, and where the material response is potentially non-linear and inelastic.

The strains can be evaluated by means of the following in general non-linear relationship

ε = Bs(u) · u, (15)

where Bs denotes an appropriate matrix relating strains with nodal displacements.

The stresses are computed by solving this constitutive equation

σ =
∑

nelem

ε∫

0

Ddε, (16)

where D stands for the tangent material matrix. Its particular form depends on applied material model.
We sum over nelem elements.

The MPRGP and SMALBE algorithms are directly applicable to solution to the contact problem,
which itself is a strongly non-linear phenomenon indeed, but with other conditions linear. Any addi-
tional non-linear effect necessitates employment of the nested iteration strategy, where the inner loop is
concerned with TFETI based solver, while the outer loop iterates on the material/geometric non-linear
effects and contact geometry update so that it might achieve equilibrium.
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Consider the state of equilibrium of the system. Employing the modified Newton-Raphson iterative
method, the governing equilibrium equations is as follows

K(i−1) ∆u(i) = fext − f
(i−1)
int . (17)

K, fext and fint denote the stiffness matrix, the vector of external nodal loading, and vector of
internal nodal forces, respectively. The right superscript (i) stands for the current number of iteration.
∆u(i) denotes the displacement increment at each iteration, while the total displacement is updated as
follows

u(i) = u(i−1) + ∆u(i). (18)

Then we can in turn compute the strain tensor, stress tensor and internal forces as reads

ε(i) = Bs

(
u(i)
)
u(i), (19a)

σ(i) =
∑

nelem

ε(i)∫

0

Ddε, (19b)

f
(i)
int =

∑

nelem

∫

Ω(i)

Bs
>(u(i)) σ(ε(i)) dΩ(i). (19c)

Equations (17) to (19) describe the problem in terms of the primal variables, i.e. displacements. The
stiffness matrix and RHS vector of eqn. (17) have to be transformed in the sense of Section 2. in order
that the problem might be computed by MPRGP/SMALBE algorithms for the Lagrangian multipliers.
Then we can return to the primary variables, i.e. the displacement increments.

The simplified solution algorithm is shown in the following flowchart.

Initial step: Assemble stiffness matrix K and BE ;
Set i = 0, u0 = 0, f0

int = 0;

Step 1: Evaluate contact conditions B(i)
I ;

Step 2: Solve contact problem by MPRGP/SMALBE for λ→ ∆u,
u(i) = u(i−1) + ∆u.

Step 3: Compute the strain tensor ε(i) and stress tensor σ(i).

Step 4: Integrate the equivalent internal forces f (i)
int.

Step 5: Assemble the residual load vector res(i) = f
(i)
int − fext;

check on convergence criteria ‖∆u‖
‖u(i)‖ < η1 ,

‖res(i)‖
‖fext‖ < η2;

If fulfilled then STOP,
otherwise set i← i+ 1 and go to Step 1.

6. Numerical Experiments

This section presents results of two sets of numerical experiments with the proposed algorithms. The
first one is concerned with analysis of a bolt and nut contact problem and the second one shows results
concerning the numerical and parallel scalabilities. All the numerical experiments were carried out with
our in-house general purpose finite element package PMD (Package for Machine Design) (7).
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F (a) (b)

Fig. 1: Bolt & nut problem; (a) schematic sketch, (b) mesh.

6.1. Bolt and Nut Contact Problem

Consider a bolt and nut of 30 mm diameter and the metric thread. The nut rests on a washer and the
bolt is loaded by a force F according to fig. 1(a). The problem is semi-coercive in the sense that we did
not prescribe any constraints for the bolt in the direction of its axis. The motion of the bolt is restricted
only by the surfaces in contact. Fig. 1(b) shows the finite element mesh, which was strictly created in
accordance with the corresponding technical standard, apart from the thread that is not in form of the
helix but rings. The problem is modelled with linear penta/hexahedra and we modelled only one quarter
because of the symmetry. Numbers of primal and dual variables are 95052 and 1296, respectively,
for the case with decomposition into two sub-domains. We consider both the geometric and material
non-linear effects. The material properties for linearly–elastic–perfectly–plastic material model are as
follows: Young’s modulus E = 2.1×1011 Pa, Poisson’s ratio ν = 0.3 and yield stress σY = 250MPa.
We used the von Mises yield criterion.

Fig. 2 shows distribution of von Mises stresses for three levels of loading. The first column depicts
results for load F = 3.8kN , the second one for F = 11.3kN , and the third one for F = 22.6kN .
The upper row represents results with applied elastic material model and the lower one with the plastic
model.

6.2. Numerical and Parallel Scalabilities

Consider contact of two identical elastic cubes of size a = 10 mm and of the following material prop-
erties: Young’s modulus E = 2.1 × 1011 Pa and Poisson’s ratio ν = 0.3. The computational model
is discretised by tri-linear cubical elements and decomposed into cubical sub-domains, while their ratio
H
h = 10. Considering parallel treatment, each sub-domain is assigned one processor.

The upper part of table 1 shows numbers of primal and dual variables for various decompositions.
The lowest row demonstrates the numerical scalability of our algorithm. It reads numbers of the Hessian
multiplications, which are the most important indicators of the performance of the algorithm and corre-
spond to the numbers of iterations. It is obvious that the number of iterations increases only mildly with
refinement of the mesh in the case that the ratio H

h is held constant, which is in good agreement with
theory.

It is clear from table 2 that our algorithm exhibits the parallel scalability.
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Fig. 2: Von Mises stress distribution.

Tab. 1: Numerical Scalability.

Subdomains 16 54 128 250

Primal variables 196 608 663 552 1 572 864 3 072 000

Dual variables 21 706 81 652 214 699 443 920

Hessian multiplications 60 63 67 69

Tab. 2: Parallel Speed-up.

Processors 2 4 8 16 24

Solver 1.76 3.66 7.57 15.30 22.89

Preprocessor 1.70 3.61 7.55 15.24 22.81

Total 1.73 3.63 7.56 15.27 22.85

Dobiáš J., Pták S., Dostál Z., Kozubek T., Markopoulos A. 209



7. Conclusion

New version of the algorithms MPRGP and SMALBE stemming from the TFETI domain decomposition
method were applied to solution to contact problems accompanied by geometric and material non-linear
effects. It was shown that they yield accurate solution, their converge rate is high and they exhibit
both numerical and parallel scalabilities, which is essential for their application to the high performance
computers.
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[4] Dostál, Z., Horák, D. & Kučera, R., Total FETI - an easier implementable variant of the FETI
method for numerical solution of elliptic PDE. Communications in Numerical Methods in Engi-
neering, Vol 22, No.6, pp 1155–1162, 2006.
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