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Abstract:  The mathematical model of a circular plate according to Kirchhoff’s theory contains 
classical derivatives of internal forces, moments, slopes of a middle surface and deflection. However 
these derivatives are not defined at such internal points of middle plane where a line lateral loading, a 
line moment loading, a line support, or a rotational coupling between plate segments is situated. We have 
used the distributional derivatives for the unknown discontinuous functions, and developed a generalized 
mathematical model in the form of a system of ordinary differential equations in order that the 
mathematical model of the circular plate subjected to axisymmetric loading may be valid also along the 
lines of discontinuity mentioned, which are common in calculating experience. We have found a general 
solution to the generalized system of differential equations by means of a symbolic programming 
approach using Maple. 
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1. Introduction 

Solving analytically a circular or annular plate subjected to an axisymmetric bending with 
discontinuous loading, support or geometry, we at first divide the plate into segments without 
discontinuities. Then, we find continuous solutions with integration constants for each plate segment 
separately. Finally, we determine integration constants using boundary conditions and continuity 
conditions among adjoining plate segments. 

    Applying distributional derivative (Schwartz, 1966) for the transverse shear force, the radial 
bending moment, and for the slope of a middle-surface in a meridian plane, we can derive a 
generalized mathematical model of the circular plate with discontinuities in loading, support and 
geometry that can be solved like only one differential problem without dividing plates into segments, 
and without using continuity conditions. 

2. The classical mathematical model of an axisymmetric bending of the plate 

According to the Kirchhoff’s plate bending theory, a system of differential equations describing 
axisymmetric bending of circular plates may be composed of five ordinary differential equations of the 
first order (Reddy, 1999; Höschl, 1971; Timoshenko & Woinowsky-Krieger, 1959) as follows: 
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where 
( )qr r  the transverse shear force per unit length, 

( )mr r  the radial bending moment per unit length, 

( )mt r  the circumferential bending moment per unit length, 

( )! x  the slope of a middle-surface in a meridian plane, 

w(x) the deflection, 

( )p r   the surface loading in normal direction to the middle plane, 
r the radial coordinate. 
B the plate bending stiffness, 
E Young’s modulus, 
µ Poisson’s ratio, 
h the thickness of the plate. 

Equations (1), (2) are equilibrium conditions of a plate element cut out in the undeformed shape. 
Bending moments (3), (4) have been derived for curvatures supposing (6). 

3. The normal form of the ordinary differential equations system 

In order to be able to express discontinuities of unknown dependently variable quantities 
mathematically, we at first express the system of differential equations (1), (2), (3), (5) in the normal 
form as follows where the circumferential bending moment has been excluded using equation (4): 
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where the total transverse shear force is: 

                                                       = ( )Qrc r 2 ! r ( )qr r     ,                                                             (12) 

and the total radial bending moment is: 
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4. Dividing discontinuities of loading, support and geometry into groups 

All the given discontinuities can be divided into two groups according to their influence on 
discontinuities of unknown dependently variable quantities, i.e. generalized internal forces and 
generalized deformations. 

     The first group contains such discontinuities which do not cause another ones, so they can be 
expressed by means of Heaviside step function denoted further by Heaviside(x). 

     The second group contains such discontinuities which cause another ones, so they can be expressed 
by means of Dirac singular distribution denoted further by Dirac(x). 

     E.g., the discontinuous surface loading p(r) occurring in equation (1) or (8) belongs into the first 
group of given discontinuities. A line lateral loading, a line support or a line bending loading acting at 
internal points of the middle-plane or a line joint between plate segments belong into the second group 
of the given discontinuities. 

     The equation (8) is not valid at such internal points of the middle-plane of the plate where a line 
lateral loading is applied, or a line support is situated. Likewise, the equation (9) is not valid at such 
internal points of the middle-plane of the plate where a line bending loading is applied. Similarly, the 
equation (10) is not valid at such internal points of the middle-plane of the plate where a line joint 
along a circle is placed connecting plate segments. In order that the mathematical model of the 
axisymmetric bending of the circular or annular plate may be valid also at internal points of the 
middle-plane in which jump discontinuities of the lateral shear force or the bending moment or the 
slope of the middle-surface may occur, we have to extend the right-hand side of the equations (8), (9), 
(10) by adding appropriate distributional part according to the distributional derivative definition 
(Schwarz, 1966; Kanwal, 2004) that is as follows: 
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the right-hand limit of f(x) at point x0 , 
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the left-hand limit of f(x) at point x0 , 

( )Dirac  ! x x0  Dirac distribution with its singularity at point  = x x0 . 

5. The generalized mathematical model of axisymmetric bending of the circular plate 

Considering n1 line lateral loadings, n2 line support reactions, and applying the equation (14) along 
with the equation (8), we can generalize the force equilibrium equation of the plate element into the 
form of the equation (15), which is valid also for a discontinuous diagram of the transverse shear 
force. Likewise, considering n3 line bending loadings, and applying the equation (14) along with the 
equation (9), we can generalize the moment equilibrium equation of the plate element into the form of 
the equation (16), which is valid also for a discontinuous diagram of the bending moment. Similarly, 
considering n4 line joints connecting plate segments, and applying the equation (14) along with the 
equation (10), we can generalize the first derivative of the slope into the form of the equation (17), 
which is valid also for a discontinuous diagram of the slope of the middle-surface of the plate in a 
meridian plane: 
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where 

Fi the i-th line lateral loading on a 360º basis, 
Ri the i-th line reaction force on a 360º basis, 
Ci the i-th line bending loading on a 360º basis, 
#i the magnitude of a jump discontinuity of the slope, ( )! x , at i-th line joint connection of 

plate segments, 
ai the radius of the circle along which the line lateral loading Fi is applied, 

bi the radius of the circle along which the plate is supported, and where a line reaction 
force Ri may occur, 

gi the radius of the circle along which the line bending loading Ci is applied, 

ki the radius of the circle along which two plate segments are joined, and where a jump 
discontinuity #i of the slope may occur, 

n1 the number of line lateral loadings, 
n2 the number of line supports, 
n3 the number of line moment loadings, 
n4 the number of line joints connecting plate segments. 

6. The general solution to the generalized system of differential equations (15) to (18) 

Using equations (15) and (17), we can eliminate the shear force and the bending moment from the 
equation (16), receiving a final equation for only one unknown quantity, i.e. the slope of the middle-
surface. We can integrate the final equation by using integrating factors. 

     In order that results gained may be easier to survey, we have computed the general solutions to the 
system of equations (15) to (18) for simple cases of discontinuous loading and geometry: i) a line 
lateral loading, ii) a line bending loading, iii) a line joint along a circle between plate segments. 

     A particular solution to the inhomogeneous system (15) to (18) for a combination of the line 
loadings, supports or joint couplings of the plate segments can be found as a sum of simple particular 
solutions presented further, where the particular solution for a line support is different from the 
particular solution for the line lateral loading by minus sign. Integration constants have been denoted 
by c1, c2, c3, c4. In order to determine the integration constants, we have to formulate boundary 
conditions. To determine support reactions at internal points of the middle-plane of the plate, we have 
to create deformation conditions of the line supports. Likewise, so as to be able to determine the 
magnitude of the jump discontinuity of the slope of the middle-surface at the line joint between plate 
segments, we have to put a deformation condition of the joint together. 
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6.1. The general solution to the system (15) to (18) for one line lateral loading 

Let the line lateral loading be denoted by F1 = F acting along a circle of diameter r=a1=a, i.e. n1=1, 
n2=n3=n4=0. In this case, the general solution can be expressed as follows: 
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6.2. The general solution to the system (15) to (18) for one line bending loading  

Let the line bending loading be denoted by C1 = C acting along a circle of diameter r = g1 =g, i.e. 
n3=1, n1=n2=n4=0. In this case, the general solution can be expressed as follows:  
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6.3.  The general solution to the system (15) to (18) for one line joint between plate segments 

Let the magnitude of the jump discontinuity of the slope be denoted by #1 = # occurring along a circle 
of diameter r = k1 = k, i.e. n4 = 1, n1=n2=n3=0. In this case, the general solution can be expressed as 
follows:  

                                                      = ( )Qrc r !16 " B c4                                                                        (27) 

  

( )Mrc r ! ( ) + 4 µ 4 r B c2
! ( )"  + 2 2 µ B c3

r ( )"  " ! ( ) + 8 8 µ ( )ln r 8 ! r B c4"  "  +  = 

#

$
%%

&

'
(("  " 

! ( ) " 1 µ2 k
r

! ( ) " µ2 1 r
k B ) ( )Heaviside  " r k + 

                 (28) 

       = ( )! r "  "  "  + 2 r c2
c3
r 4 r c4 ( )ln r

#

$

%%%%%

&

'

((((( + 

#
$
%%

&
'
(( + 

µ
2

1
2 k

r

#
$
%%

&
'
(("  + 

µ
2

1
2 r

k ( )Heaviside  " r k )                (29) 

           
( )w r c1 r2 c2 ( )ln r c3 r2 ( ) ! 2 ( )ln r 1 c4 +  +  +  = 

"

#

$$$$$

%

&

''''' + "
#
$$

%
&
'' +  +  !  + "

#
$$

%
&
''!  ! 

µ
2

1
2 ( )ln r

1
2 ( )ln k

1
4

µ
4

1
2 ( )ln k µ k

"
#
$$

%
&
''!  + 

1
4

µ
4 r2

k ( ( )Heaviside  ! r k +          

                                                                                                                                                              (30) 

7. Conclusions 

The contribution of this paper is that the generalized mathematical model of the plate, Eq. (15) to (18), 
is valid also for discontinuous graphs of the transverse shear force, the radial bending moment, and the 
slope of the middle-surface in a meridian plane caused by line lateral loadings or line supports, line 
moment loadings situated along the circles lying inside the middle-plane of the plate, and by line joints 
connecting plate segments, resp.. The jump discontinuities of the unknown dependently variable 
quantities have been expressed using Dirac singular distribution at the right side of Eq. (15) to (17).  

     In order to determine magnitudes of the unknown jump discontinuities owing to the internal along-
circular supports or joints, we have to use deformation conditions at points of these geometric 
discontinuities.  

     The general solution to the system of ordinary differential equations (15) to (18) has been 
computed using symbolic programming approach, and has been partly presented in Eq. (19) to (30). 
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