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Abstract: The use of composite materials is one of current trends in civil engineering. Proper description 
of their behavior is one of prerequisites for correct and appropriate application of these materials. The 
subject of our research are fiber reinforced composite materials that exhibit tensile pseudo-ductile and 
strain hardening behavior. Response of a single fiber is one of many factors that affect the overall 
response of the composite. In the literature analytical relations describing the behavior of a fiber during 
its pull-out from the surrounding matrix can be found. Up to now, these models did not take into account 
the possibility that a fiber bridges more than one crack. In the present paper, we refine the model for one 
fiber by considering that it may cross several parallel cracks. A numerical study is performed to 
investigate the effect of this consideration on the relation between force acting in the fiber and its pull-out 
displacement. 

Keywords: Fiber-reinforced composite, fiber bridging, pseudo-ductility, strain hardening, multiple 
cracking 

1. Introduction 

Historical monuments are at the present time subjected to various effects, which their builders couldn’t 
take into account at the time of construction and which contribute to their deterioration. Excessive 
loads caused by temperature fluctuations or technical seismicity due to traffic and technological 
processes cause degradation and cracking of historical masonry. The cracks pave the way for 
penetration of water and contaminants into the masonry, which leads to further degradation. These 
cracks often formed in the masonry joints, because mortar is usually the weaker element. To alleviate 
the degradation we are developing a fiber reinforced mortar that under tensile stress undergoes 
multiple cracking as opposed to failing by a single brittle crack. During the multiple cracking process, 
a large number of fine cracks with controlled width forms, while the mortar retains macroscopic 
integrity. Keeping the small crack width may prevent penetration of contaminants. For these cases a 
methodology for systematic design of materials with brittle matrix reinforced with short fibers was 
developed (Li, 2003). This methodology employs micromechanics and fracture mechanics based 
models of the damage phenomena taking place at the level of the composite microstructure, such as 
fiber debonding and pullout and matrix cracking. It was successfully used, for example, for design of 
Engineered Cementitious Composites – ECC (Li, 2003). Our intention is to use this approach to 
develop a new lime mortar reinforced with short random fibers, which could be applied to restoration 
works on historic buildings. As part of this effort we further refine the existing micromechanical 
models to take into account previously neglected phenomena. 

2. Single fiber response 

Bridging effect of fibers crossing a crack in a brittle-matrix composite has a dominant influence on 
whether the material eventually exhibits multiple cracking (Marshall et al., 1988). When a fiber-
bridged crack forms and opens, the fibers are being extracted from the surrounding matrix. This 
process can be divided into two main stages, which can be described by the relationship between force 
P on the pulled-out end of the fiber and displacement u at the same point. In the first stage, the fiber 
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gradually debonds from the matrix and as the force P increases. Assuming that debonding is resisted 
by fiber-matrix chemical bond strength Gd, that the debonded portion of the fiber elastically deforms, 
and that constant friction τ0 acts on the debonded fiber-matrix interface, this stage can be described by 
Eq. (1). This stage is completed when the embedded end of the fiber becomes fully debonded from the 
matrix. The corresponding displacement of u then reaches the value of δc given in Eq. (2). A pull-out 
phase follows, during which the fiber slips out from the matrix while the contact area with the matrix 
diminishes. The pull-out phase is described by Eq. (3). The whole P – u relation is shown in Fig. 1. 
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In equations is Ef fiber elastic modulus, Le is fiber embedment length, df is fiber diameter, τ0 is 
frictional stress on debonded interface, Gd is fiber-matrix chemical bond strength and β is fiber-matrix 
interface slip-hardening parameter. 
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Fig. 1: Single fiber pull-out response 

3. Probability of fiber bridging several cracks 

The model described above adopts the assumption, that a fiber bridges only one crack. However, the 
length of fibers that are typically used in short-fiber reinforced mortars is in the order of 10 mm, while 
the crack to crack distance during multiple cracking can be as low as few mm. A question naturally 
arises, whether the P – u relation described above is realistic in the multiply-cracking composites. 
Thus, the aim of this paper is to describe the influence of a state when a fiber bridges more than one 
crack. 

First of all, let us investigate how many fibers may bridge more than one crack when the 
composite undergoes multiple cracking. To this end, we assume that fibers of length Lf are randomly 
distributed and oriented in the composite. Furthermore, we assume that matrix cracks, bridged by 
these fibers, are perfectly planar and parallel. The analytical relation derived below describes the 
probability with which a fiber passing through a fixed point P on a one crack crosses another crack at a 
distance dc.  

All possible cases of the position of the fiber end points fill the space corresponding to the sphere 
with radius Le and center at point P. For one side of the crack it is a hemisphere. End points of fibers, 
which intersect the second crack, fill the space corresponding to the spherical cap of the hemisphere 
with a height Le-dc. (see Fig. 2). The ratio of the volume of the hemisphere and the spherical cap (Eq. 
4) describes the probability with which a fiber intersects two parallel cracks with the given distance. 
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Fig. 2: Randomly oriented fiber in space with two parallel cracks 
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To verify the validity of the analytical relationship in Eq. (4), a numerical simulation was 
performed. We considered prismatic specimens of fiber reinforced composite with the same length of 
200 mm but different square cross-sections with widths a) 50 mm b) 100 mm c) 200 mm.. Within 
these volumes, random fibers were generated keeping fiber volume fraction constant and equal to 2 %. 
Pairs of cracks (perpendicular to the specimen axis) with different mutual distances were inserted into 
each specimen and the number of fibers bridging both cracks was counted. The results for each 
specimen were averaged and the probability P was calculated. Figure 3 shows a very good agreement 
between the results of the analytical solution (Eq. 4) and numerical simulations.  
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Fig. 3: Dependence of the number of fibers intersecting two parallel cracks on their distance 

4. Crack spacing 

At a crack plane, each fiber carries its bridging force. The fiber force decreases along its length with 
increasing distance from the crack plane due to transfer of the load to the surrounding matrix through 
the friction at the interface. At the end of debonded fiber-matrix interface (at distance dc from the 
crack) the force is completely transferred to the matrix. Assuming constant frictional stress τ0 along the 
interface, this force can be expressed as: 
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If we consider spatial randomness of fiber orientation, the number of fibers bridging a crack of unit 
area Ns is (Naaman 1972 referenced in Naaman, 2008):  
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And the area of crack corresponds to single fiber is: 

 
f

f
m V

d
A

2

2π
=  (7) 

The stress in matrix at distance dc can be expressed as: 
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Assuming that a new crack forms when stress σm reaches the matrix tensile strength ft, we can 
express the crack to crack distance for single fiber perpendicular to crack with sufficient embedment 
length as: 
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Where η = (EfVf)/(EmVm) expresses deformation of the matrix, Vm is matrix volume fraction, Em is 
matrix elastic modulus, Vf is fiber volume fraction. For material and geometric parameters of typical 
ECC with PVA fibers df = 0,04 mm, Le = 12 mm, Ef = 21 800 MPa, τ0 = 2,21 MPa, Gd = 0,004 N/mm, 
Em = 15900 MPa, ft = 4,3 MPa and Vf = 0,02 we get dc = 1,34 mm. From Eq. (4) we get that 
approximately 84 % of fibers crossing two cracks in this distance, which shows, that the possibility of 
fibers bridging multiple cracks should be taken into account. 

5. Response of fiber bridging several cracks 

For a description of behavior of single fiber bridging several cracks a numerical model was created 
and implemented in software MATLAB. This model utilizes the analytical relations of Eq. (1) – (3). 
We consider that a fiber bridges one main and one or two adjacent cracks. The distances between the 
main and adjacent cracks were being changed and we monitored the Pf - w relationship of the fiber at 
the main crack, where w crack opening and Pf is force in the fiber. 

Cracks divide the fiber into several parts. Computation was controlled by displacement us on 
shorter of edge parts, because this part determines maximum force in the fiber Pf. During the 
debonding stage, separation occurs on every side of each crack. There is tunnel crack propagation 
along the fiber and debonded length Ldeb is: 
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When the debonded length Ldeb reaches the embedment length Le on shorter edge part, pull-out 
phase occurs and force in fiber decreases in case β = 0. The crack beside shorter edge part is opening 
and others are closing due to fiber stiffness. Another case occurs when tunnels propagating from two 
nearby cracks meet. Debonding stops and when force Pf increases, only elastic deformation of fiber 
continues, which is restrained by frictional stress τ0 at the interface. Displacement of fiber at any point 
can be described by equation: 
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Considering, that center of full debonded part don’t change its position on fiber and embedment 
length on this part corresponds to half distance of cracks dc, we get contribution to the crack opening 
as elongation of fiber from half of this part: 
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Finally, we obtain crack opening w as the sum of pulled length on both sides of the crack: 
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Where ui is prescribed us for debonding or u for elastic deformation of the fiber from Eq. (12). 
Responses of fiber in the main crack are shown in Figure 4 and schematic drawings (possible states) at 
the end of debonding stage are shown in Figure 5. 
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Fig. 4: Single fiber response for one nearby crack (left) and two nearby cracks (right) 
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Fig. 5: Schematic drawings for different dc – one nearby crack (left) and two nearby cracks (right) 

6. Conclusions 

According to the results, the single fiber response is affected by the interaction of cracks. This 
interaction occurs when dc < 2Le. It causes that for the same force Pf we get smaller crack opening w. 
Future work on this topic will be focused on examination how the interaction of cracks affects the 
behavior of cracks themselves.  
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