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Abstract: The study is focused on mathematical modelling of pulsatile blood flow in a patient-specific
aorto-coronary bypass model with individual graft. Blood is considered to be an incompressible non-
Newtonian fluid, whose behaviour is described by the macroscopic Carreau-Yasuda model. The numerical
solution of the non-linear system of incompressible Navier-Stokes equations is based on the three-stage
fractional step method and the cell-centred finite volume method formulated for hybrid unstructured tetra-
hedral grids. Since patency and long-term performance of all implanted bypass grafts is closely related to
hemodynamics, all obtained results are analysed and discussed with the help of several significant hemo-
dynamical wall parameters such as cycle-averaged wall shear stress and oscillatory shear index.
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1. Introduction

Nowadays it is generally accepted that the performance and patency of implanted bypass grafts is signifi-
cantly affected by local hemodynamics, Loth et al. (2008). Beside thrombogenesis, usually originating in
low flow rates or technical mistakes, Vural et al. (2001), the majority of recorded bypass failures is often
caused by intimal hyperplasia, Haruguchi and Teraoka (2003). This type of intimal thickening represents
a form of abnormal healing process observed at the distal anastomosis of the implanted graft, Fig. 1.
The morphological and metabolic changes observed in vessel walls are hypothesised to be triggered by
disturbed blood flow and low and oscillating shear stress, Bassiouny et al. (1992). In this regard, the
investigation of hemodynamics in the form of numerical simulations represents a valuable contribution
to the understanding of graft disease formation.

Fig. 1: Localisation of intimal thickening at the distal end-to-side anastomosis with relevant terminology,
modified from Bassiouny et al. (1992).

In relation to previous modelling of steady non-Newtonian blood flow performed in an idealized
complete bypass model with two end-to-side anastomoses, Vimmr and Jonášová (2010), present study
tries to contribute to this investigation by modelling pulsatile non-Newtonian blood flow in a realistic
aorto-coronary bypass model. The analysis and discussion of obtained numerical results is carried out
with the help of two hemodynamically significant wall parameters – cycle-averaged wall shear stress
(WSS) and oscillatory shear index (OSI).
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2. Problem formulation

The main objective of this study is the analysis of hemodynamics in an individual aorto-coronary bypass
graft. In cardiovascular surgery, the term individual denotes a vascular graft with one distal end-to-side
anastomosis, i.e., the graft provides a direct connection between the aorta and the stenosed or occluded
coronary artery. The bypass model considered in this study is reconstructed from CT data provided by the
courtesy of the University Hospital in Pilsen, Czech Republic. The reconstruction process and computa-
tional mesh generation are carried out in software packages Amira and Altair Hypermesh, respectively.
An example of primary reconstruction of the chest region and of the individual bypass graft is shown
in Fig. 2. The final shape of the bypass model after smoothing is displayed in Fig. 3. The unstructured
computational mesh used for all numerical simulations consists of 362,437 tetrahedral cells.

Fig. 2: CT reconstruction of the chest region (left) and of the aorto-coronary bypass graft (right)

For the purpose of blood flow simulations in the prepared individual graft, we choose an approach
similar to that found in other studies published to the theme of bypass hemodynamics, see the review
paper Loth et al. (2008). Firstly, taking into account the fact that at the end of the arterialisation process,
venous grafts lose their compliance, all the bypass walls are, in this study, modelled as impermeable and
rigid, including the wall of the aorta. In the light of this simplification, we are aware that the neglected
aortic elasticity represents a considerable limitation of the present study. We hope to rectify it in one of
our future projects by solving the fluid-structure interaction problem. In this study, we further assume a
static aorto-coronary bypass model, i.e., the impact of heart beating is not considered. This assumption
is based on the findings published in Zeng et al. (2003), where it was shown that the arterial motion
does not significantly affect blood flow in the case of flow pulsatility. In order to model blood’s complex
rheological properties, we introduce the macroscopic non-Newtonian Carreau-Yasuda model, which we
have successfully applied in our previous simulations, Vimmr and Jonášová (2010),

η(γ̇) = η∞ + (η0 − η∞)
[
1 +

(
λγ̇
)a]n−1

a
, (1)

where η0 and η∞ are the zero and infinite shear viscosities, respectively, λ is the characteristic relaxation
time and n is the flow index. The five parameters occurring in the Carreau-Yasuda model (1) may
be determined by numerical fitting of experimental data. In this study, we adopt data mentioned in
Cho and Kensey (1991): η∞ = 3.45 · 10−3 Pa · s, η0 = 56 · 10−3 Pa · s, λ = 1.902 s, a = 1.25,
n = 0.22. The shear rate is given as γ̇ = 2

√
DII , where DII denotes the second invariant of the rate of

deformation tensor D = 1
2

(
∇v + (∇v)T

)
. For the incompressible fluid, the second invariant is defined

as DII = 1
2 dijdij , i, j = 1, 2, 3, where dij are the components of the rate of deformation tensor D. For

the Newtonian flow, the molecular viscosity is kept constant and equal to infinite shear viscosity η∞.
Finally, note that the coronary arteries shown in Fig. 3 are considered to be occluded (with no inflow) so
that the only relevant incoming flow will be that of the bypass graft.
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Fig. 3: Individual graft – unstructured computational mesh and relevant terminology

3. Mathematical model

Let us consider a time interval (0, T ), T > 0 and a bounded three-dimensional computational domain
Ω ⊂ R3 with boundary ∂Ω = ∂ΩI ∪ ∂ΩO ∪ ∂ΩW , where ∂ΩI , ∂ΩO and ∂ΩW denote the inlet, the
outlet and the walls of the computational domain, respectively. In this study, coronary blood flow is
modelled as unsteady laminar isothermal flow of incompressible generalised Newtonian fluid that in the
space-time cylinder ΩT = Ω × (0, T ) is mathematically described by the non-linear system of incom-
pressible Navier-Stokes (NS) equations written in the non-dimensional form

∂vi
∂xi

= 0 , (2)

∂vi
∂t

+
∂

∂xj
(vivj) +

∂p

∂xi
=

1

Re
∂

∂xj

[
η(γ̇)

(
∂vi
∂xj

+
∂vj
∂xi

)]
for i, j = 1, 2, 3 , (3)

where t ∈ (0, T ) is the time, vi is the i-th component of the velocity vector v = [v1, v2, v3]T correspond-
ing to the Cartesian component xi of the space variables vector x = [x1, x2, x3]T ∈ Ω, p is the pressure,
Re is the reference Reynolds number and η(γ̇) is the shear-dependent viscosity given by Eq. (1).

All variables appearing in Eqs. (2) – (3) are non-dimensionalized by the reference velocity Uref > 0
and characteristic length Dref > 0. For the bypass model considered in this study, the characteristic
length value was chosen to be equal to the aorta diameter Dref ≡ D(A) = 0.036 m and the reference
velocity is stated as Uref = 4Q0/(πD

2
ref ) = 0.1592 m · s−1, where average aortic inlet flow rate is

Q0 = 112.56 · 10−6 m3 · s−1, see Fig. 6 (left). As for the reference Reynolds number, it is determined
as Re = UrefDref%/ηref = 1 744.3, where % = 1050 kg · m−3 and ηref ≡ η∞ = 3.45 · 10−3 Pa · s.
For the sake of completeness, reference pressure and reference time are computed as pref = %U2

ref and
tref = Dref/Uref , respectively.

4. Numerical method

The numerical solution of the non-linear time-dependent system of incompressible NS equations (2) –
(3) is based on the projection method. In this study, the computation of velocity components vn+1

i , which
satisfy the divergence-free condition (2), employs the three-stage fractional step scheme, Ferziger and
Perić (1999). In the first stage, intermediate velocity components v∗i are explicitly computed from the
convective part of the NS equation (3) as

v∗i − vni
∆t

+
∂

∂xj
(vni v

n
j ) = 0 , i, j = 1, 2, 3 . (4)
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For the second stage of the fractional step scheme, the intermediate velocity components v̂i are computed
applying the unconditionally stable implicit Crank-Nicolson scheme to the viscous term of Eq. (3)

v̂i − v∗i
∆t

=
1

2Re
∂

∂xj

[
η(γ̇)

(
∂(v̂i + v∗i )

∂xj
+
∂(v̂j + v∗j )

∂xi

)]
, i, j = 1, 2, 3. (5)

Let us linearise the shear-dependent dynamic viscosity η(γ̇) as η(γ̇) = η(γ̇(v∗)) and introduce an auxil-
iary variable dij = 1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, which in this case is equal to the components of the rate of deforma-

tion tensor D mentioned in section 2. Then Eq. (5) can be rewritten as a system of two linear equations

v̂i − v∗i
∆t

=
1

Re
∂

∂xj

[
η(γ̇)

(
d̂ij + d∗ij

)]
, (6)

d̂ij =
1

2

(
∂v̂i
∂xj

+
∂v̂j
∂xi

)
. (7)

In the third stage, pressure is used for the projection of the intermediate velocity vector v̂ onto a space
of divergence-free velocity field to get the values of velocity and pressure at the next time level (n+ 1).
Hence, the velocity components vn+1

i are computed from

vn+1
i − v̂i

∆t
+
∂pn+1

∂xi
= 0 , i = 1, 2, 3, (8)

where pn+1 is computed from the Poisson equation for pressure

∂2pn+1

∂xi∂xi
=

1

∆t

∂v̂i
∂xi

. (9)

It can be easily shown that sum of Eqs. (4), (5) and (8) yields the approximation of NS equations of
first order time accuracy. Finally, the whole algorithm of the fractional step method may be written for
i, j = 1, 2, 3 as follows

v∗i = vni −∆t
∂

∂xj

(
vni v

n
j

)
, (10)

v̂i
∆t
− 1

Re
∂

∂xj

(
η(γ̇) d̂ij

)
=

v∗i
∆t

+
1

Re
∂

∂xj

(
η(γ̇) d∗ij

)
, (11)

d̂ij −
1

2

(
∂v̂i
∂xj

+
∂v̂j
∂xi

)
= 0 , (12)

∂2pn+1

∂xi∂xi
=

1

∆t

∂v̂i
∂xi

, (13)

vn+1
i = v̂i −∆t

∂pn+1

∂xi
. (14)

The space discretization of the system of Eqs. (10) – (14) is performed using the cell-centred finite
volume method for hybrid unstructured tetrahedral grids. The idea of applying the hybrid unstructured
grid for the numerical solution of time-dependent incompressible NS equations in 2D was introduced in
Kim and Choi (2000). The principle of this grid system lies in the coupling between an interpolation
method, which will be described later, and the non-staggered grid system. Being inspired with this idea,
we consider in this study a control volume Ωk in the form of tetrahedron, Fig. 4. The hybrid grid system
defines the values of pressure and Cartesian velocity components in the centre of the control volume Ωk

and the values of face-normal velocity Vm, which has the direction of outward unit vector nm
k normal to

the m-th face Γm
k of the control volume Ωk, is defined in the middle of the face Γm

k .

After the integration of Eqs. (10) – (14) over each control volume Ωk, Fig. 4, k = 1, 2, . . . , NCV ,
where NCV is the number of control volumes within the hybrid unstructured tetrahedral computational
mesh, after the introduction of integral average for an arbitrary flow quantity Φ over the control volume
Ωk

(Φ)k =
1

|Ωk|

∫

Ωk

ΦdΩ, (15)
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Fig. 4: A tetrahedral control volume Ωk = A1A2A3A4 with boundary ∂Ωk =
4⋃

m=1
Γm
k belonging to the

hybrid unstructured computational mesh.

where |Ωk| is the volume of the tetrahedral control volume Ωk, and finally, after the application of the
Gauss-Ostrogradsky theorem, which converts the volume integrals to surface integrals, we get

(v∗i )k = (vni )k −
∆t

|Ωk|

∮

∂Ωk

(
vnj · jnk

)
· vni dΓ, (16)

1

∆t
(v̂i)k −

1

Re|Ωk|

∮

∂Ωk

η(γ̇) d̂ij · jnk dΓ =
1

∆t
(v∗i )k +

1

Re|Ωk|

∮

∂Ωk

η(γ̇) d∗ij · jnk dΓ, (17)

(
d̂ij

)
k
− 1

2



∮

∂Ωk

v̂i · jnk dΓ +

∮

∂Ωk

v̂j · ink dΓ


 = 0 , (18)

∮

∂Ωk

∂pn+1

∂nk
dΓ =

1

∆t

∮

∂Ωk

v̂i · ink dΓ, (19)

(vn+1
i )k = (v̂i)k −

∆t

|Ωk|

∮

∂Ωk

pn+1 · ink dΓ, (20)

where ink is the i-th component of the outward unit vector nk = [1nk,
2nk,

3nk]T normal to the bound-
ary ∂Ωk of the tetrahedral control volume Ωk, Fig. 4. In order to achieve the satisfaction of the continuity
equation for the normal velocity V = vi · ink, the system of Eqs. (16) – (20) is completed with following
equation

V n+1 = V̂ −∆t
∂pn+1

∂nk
. (21)

This equation defines the normal velocity V n+1 at the time level (n + 1) having the direction of the
outward unit vector nk normal to the boundary ∂Ωk of the control volume Ωk. For the intermediate
normal velocity V̂ , it is valid that V̂ = v̂i · ink.

Further, we perform the approximation of surface integrals in the system of Eqs. (16) – (20). Firstly,
each integral is replaced by the sum of integrals over each face Γm

k of the control volume Ωk, Fig. 4, and
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then approximated by the midpoint rule

∮

∂Ωk

Φ dΓ =
4∑

m=1

∫

Γm
k

Φ dΓ ≈
4∑

m=1

Φm|Γm
k |, (22)

where |Γm
k |, m = 1, . . . , 4 is the area of the m-th face Γm

k of the control volume Ωk and Φm is the value
of an arbitrary flow quantity at the integration point at the same face. The interpolation process needed
for the determination of Φm at the m-th face Γm

k of the control volume Ωk will be described later. Using
Eq. (22), the system of Eqs. (16) – (21) is modified as follows

(v∗i )k = (vni )k −
∆t

|Ωk|
4∑

m=1

(
V n
m · vnim|upwind

)
|Γm

k | , (23)

(v̂i)k
∆t
− 1

Re |Ωk|
4∑

m=1

η(γ̇)m d̂m
ij · jnmk |Γm

k | =
(v∗i )k
∆t

+
1

Re |Ωk|
4∑

m=1

η(γ̇)m d∗mij · jnmk |Γm
k |, (24)

(
d̂ij

)
k
− 1

2

(
4∑

m=1

v̂im · jnmk |Γm
k | +

4∑

m=1

v̂j m · inmk |Γm
k |
)

= 0 , (25)

4∑

m=1

∂pn+1

∂nm
k

|Γm
k | =

1

∆t

4∑

m=1

v̂im · inmk |Γm
k | ≡

1

∆t

4∑

m=1

V̂m |Γm
k |, (26)

(vn+1
i )k = (v̂i)k −

∆t

|Ωk|
4∑

m=1

pn+1
m · inmk |Γm

k | , (27)

V n+1
m = V̂m −∆t

∂pn+1

∂nm
k

, (28)

where inmk is the i-th component of the outward unit vectornm
k = [1nmk ,

2nmk ,
3nmk ]T normal to them-th

face Γm
k of the control volume Ωk and for the intermediate face-normal velocity V̂m at the m-th face Γm

k

of the control volume Ωk, it is valid that V̂m = v̂im · inmk . Note that the values of face-normal velocity
V n+1
m computed with the help of Eq. (28) are used as values of face-normal velocity V n

m in Eq. (23) at
the next time level.

Explicit schemes are known for their disadvantage in the form of restricted time steps. The CFL
stability condition imposed on the time step size becomes essential when it is applied for grids with large
differences in cell size, e.g., in complex geometries. In this case, the efficiency of explicit schemes is
lost, since the cell with the most restrictive local time step determines the size of the global time step for
all grid cells. One of possible solutions to this problem lies in the application of the well-known local
time-stepping method. This method, whose approach is also employed in our developed solver, enables
each cell of the computational grid to run with its own time step in a time-consistent manner.

Interpolation method

To perform numerical computations according to Eqs. (23) – (28), it is necessary to determine values
of vnim|upwind, v̂im, pn+1

m and derivatives ∂v̂i
∂nm

k
, ∂v∗i
∂nm

k
, ∂pn+1

∂nm
k

at the m-th face Γm
k of the control volume

Ωk. The value of vnim|upwind is computed by the upwind scheme, whose first order accuracy is increased
by linear reconstruction with Barth’s limiter,

vnim|upwind =

{
(vni )L + σBarth

L · ∂(vni )L
∂xj

· rjL , V n
m > 0 ,

(vni )R + σBarth
R · ∂(vni )R

∂xj
· rjR , V n

m ≤ 0 ,
(29)

where σBarth ∈ [0, 1] is the Barth’s limiter, Barth and Jesperson (1989), and vectors rL, rR are denoted
in Fig. 5 (left). Further, the value Φm of an arbitrary flow quantity Φ at the mid-point O of the m-th
face Γm

k , Fig. 5 (right), can be stated with the help of second order accurate linear interpolation from
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values (Φ)k and (Φ)lm defined in cell-centres Sk and Slm of two adjacent control volumes Ωk and Ωlm ,
respectively,

Φm = (Φ)k +
(Φ)lm − (Φ)k
γk + γlm

· γk =
γlm(Φ)k + γk(Φ)lm

γk + γlm
, (30)

where γk and γlm are the minimal distances to the cell-face Γm
k from cell-centres Sk and Slm of the

adjacent control volumes Ωk and Ωlm , respectively, Fig. 5 (right). The derivative of flow quantity Φ in
the direction of the outward unit vector nm

k normal to the m-th face Γm
k of the control volume Ωk, is

approximated at the mid-point O of the face Γm
k , Fig. 5 (right), as

∂Φ

∂nm
k

∣∣∣∣∣
Γm
k

≈ (Φ)lm − (Φ)k
γk + γlm

. (31)

A crucial part of the interpolation method is the application of Eq. (31) to the normal derivative in
Eqs. (26) and (28). In this way, it is ensured that the face-normal velocity V n+1

m satisfies the continuity
equation at the time level (n + 1) exactly, see Eq. (37). However, in general velocities (vn+1

i )k in
cell-centres of control volumes Ωk do not satisfy the continuity equation.

Fig. 5: Definition of the vectors rL and rR for two adjacent tetrahedral control volumes ΩL and ΩR

(left). Two adjacent tetrahedral control volumes Ωk = A1A2A3A4 and Ωlm = A1A2A3A5 with their
contact face Γm

k = ∆A1A2A3 (right).

Regarding the implementation of non-dimensional boundary conditions at the boundary ∂Ω of the
computational domain Ω ⊂ R3, three boundary types are considered in this study:

• inlet Γm
k ⊂ ∂ΩI – In this case, Dirichlet boundary conditions for the velocity components vim

and the auxiliary variable dmij are prescribed

vim = vi I , dm
ij · jn = 0. (32)

The value of face-normal velocity V I
m at the face Γm

k is computed as V I
m = vi I · inmk , where values

vi I are given according to section 5. For the normal derivative of the pressure pn+1 at the face Γm
k ,

we prescribe
∂pn+1

∂nm
k

∣∣∣∣
Γm
k

= 0. (33)

• rigid and impermeable wall Γm
k ⊂ ∂ΩW – Velocity components vim at the face Γm

k are set equal
to zero

vim = 0 , (34)

leading to zero value of the face-normal velocity V W
m = vim · inmk = 0 at the face Γm

k . For the
auxiliary variable dm

ij , we apply the Dirichlet boundary condition in the following form

dm
ij · jn = 0 . (35)

Further, zero normal derivative of the pressure pn+1 (33) is prescribed at the wall.
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• outlet Γm
k ⊂ ∂ΩO – Following type of boundary condition is stated

pmn
m
k −

1

Re
2 η(γ̇)m dm

ij · jnmk = pOn
m
k , (36)

where pO is the given value of the outlet pressure, for details see section 5.

Substituting the derivative ∂pn+1

∂nm
k

in Eq. (26) with Eq. (28), we get

4∑

m=1

∂pn+1

∂nm
k

|Γm
k | =

1

∆t

4∑

m=1

(
V̂m − V n+1

m

)
|Γm

k | =
1

∆t

4∑

m=1

V̂m |Γm
k |

=⇒
4∑

m=1

V n+1
m |Γm

k | = 0,

(37)

i.e., face-normal velocities V n+1
m satisfy the continuity equation exactly. At this point, let us mention

that at the outlet boundary ∂ΩO, i.e., at the face Γm
k of the control volume Ωk, where Γm

k ⊂ ∂ΩO, values
∂pn+1

∂nm
k

are unknown. In order to ensure the satisfaction of the continuity equation (37) for this control

volume Ωk, it is necessary to compute the face-normal velocity V n+1
m at the face Γm

k ⊂ ∂ΩO as

V n+1
mO

= − 1

|ΓmO
k |

4∑

m=1
m 6=mO

V n+1
m |Γm

k |, (38)

where mO is the index of the outlet face ΓmO
k of the control volume Ωk. For the whole computational

domain Ω ⊂ R3 at the time t = 0, following initial conditions are used

(v0
i )k =

1

|Ωk|

∫

Ωk

vi(x, 0)dΩ = 0, (p0)k =
1

|Ωk|

∫

Ωk

p(x, 0)dΩ = pinitial, k = 1, 2, . . . , NCV ,

where pinitial is a non-dimensional value of static pressure.

5. Numerical results

In accordance with the boundaries of the computational domain denoted in Fig. 3 for the model of the
individual aorto-coronary bypass, the numerical simulations of pulsatile Newtonian and non-Newtonian
blood flow are carried out with following values of the time-dependent boundary conditions:
• aortic inlet ∂Ω

(A)
I – constant time-dependent velocity profile |vI | according to the flow rate wave-

form Q(t) shown in Fig. 6 (left);

• aortic outlet ∂Ω
(A)
O – time-dependent pressure p(t) shown in Fig. 6 (right), where the aortic pres-

sure is plotted in the medical units of millimeters of mercury (1 mmHg = 133.333 Pa);

• coronary outlets ∂Ω
(CA)
O – constant pressure related to average arterial pressure of 12 000 Pa;

• rigid and impermeable walls ∂ΩW – non-slip boundary condition.

Note that the boundary values mentioned above are, for the computation, non-dimensionalized using the
reference values mentioned in section 3. The implementation of the boundary conditions in the numerical
code is described in detail in section 4.

For the analysis of computed numerical results, we introduce two significant hemodynamical wall
parameters – the cycle-averaged wall shear stress (WSS) and the oscillatory shear index (OSI) that are
evaluated according to formulas mentioned in Xiong and Chong (2008) and He and Ku (1996), respec-
tively,

|τW | =
1

T

T∫

0

|τW |dt , OSI =
1

2


1−

∣∣∣∣∣∣

T∫

0

τW dt

∣∣∣∣∣∣
·




T∫

0

|τW |dt



−1

 , (39)

where |τW | is the WSS magnitude and T = 1 s is the duration of one cardiac cycle, Fig. 6.
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Fig. 6: Time-dependent boundary conditions for the aorta – inlet flow rateQ(t) (left) and outlet pressure
p(t) (right), data taken from Olufsen et al. (2000)

Firstly, let us analyse the velocity profiles of the non-Newtonian blood flow in Fig. 7 for three selected
time instants, corresponding to systole, diastole and late diastole, respectively. During the systolic phase
(t1 = 0.16 s), Fig. 7 (left), the graft’s proximal anastomosis becomes exposed to the increased flow rate
in the aorta. Although the skewed velocity profiles at the graft entrance may indicate incoming blood
flow, the real graft filling occurs later. By comparing the pictures in Fig. 7, it becomes quite apparent
that the systolic phase of the cardiac cycle is represented by decreased blood flow through the individual
bypass graft, whereas an opposite effect is observed during most of the diastolic phase (t2 = 0.47 s and
t3 = 0.98 s). In this case, the velocity increase observed along the individual graft is also accompanied
by skewed or otherwise shaped velocity profiles that are a result of the out-of-plane geometry and the
graft’s winding around the heart, see Fig. 2. At the distal end-to-side anastomosis, Fig. 7c, the incoming
blood flow seems to prefer the closer branch of the coronary artery more than the second one. Moreover,
the closer coronary artery shows a tendency to considerably increase velocity magnitude downstream
from the anastomosis. The reason for this phenomenon is a partly stenosed coronary artery.

The comparison between the Newtonian and non-Newtonian blood flow is illustrated by the dis-
tributions of the cycle-averaged WSS and OSI in Figs. 8 and 9, respectively. At this point, note the
lowered value range in Fig. 8, which is chosen according to conclusions mentioned in Haruguchi and
Teraoka (2003) and He and Ku (1996). Namely, that low WSS, as compared to the normal range be-
tween 1− 2 Pa in healthy arteries, is one of the confirmed triggers of vessel remodelling, plaque growth
and intimal thickening. In light of this fact, we will further assess the resulting shear distribution, which
regardless of the viscosity model (Newtonian or non-Newtonian), seems to be non-uniform at both anas-
tomoses, Fig. 8. One of the distinct areas with extremely low shear is situated at the entrance of the
graft, where it is caused by a large recirculation zone that is present there most of the cardiac cycle. This
negative stimulation of the proximal suture line is also confirmed by the high OSI shown in Fig. 9. At the
distal anastomosis, shear values below 1 Pa are observed at the heel and the arterial floor in accordance
with the sites of intimal hyperplasia displayed in Fig. 1. In this case, the critical shear stress also shows
a oscillatory tendency as is apparent from the OSI distribution in Fig. 9.

The objective of our previous study, Vimmr and Jonášová (2010), was the investigation of blood’s
non-Newtonian behaviour in complete bypass models with coronary or femoral native arteries. The
numerical simulations were carried out under steady flow conditions and for an idealized bypass geom-
etry. In the present study, we want to extend our previous conclusions about the importance of blood’s
non-Newtonian modelling in coronary bypasses by considering pulsatile blood flow and a realistic and
more complex bypass geometry. As is illustrated by Figs. 8 – 9, the influence of non-Newtonian flow
conditions is very small or rather negligible (as is the case of the velocity profiles). On the basis of
these observations, we can draw a conclusion similar to that mentioned in Vimmr and Jonášová (2010).
Namely, that blood’s non-Newtonian behaviour does not have any significant impact on the hemody-
namics in coronary bypasses. In light of this observation and our present experience with the modelling
of non-Newtonian blood flow, it may be said that an hemodynamic study in patient-specific femoral by-
passes would be more promising in regard to the occurrence of non-Newtonian effects as was concluded
in our previous study Vimmr and Jonášová (2010). This problem will be addressed in the future.
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Fig. 8: Distribution of cycle-averaged WSS for the Newtonian (left) and non-Newtonian flow (right)

Fig. 9: Distribution of OSI for the Newtonian (left) and non-Newtonian flow (right)
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Vimmr, J., Jonášová, A. (2010), Non-Newtonian effects of blood flow in complete coronary and femoral bypasses.
Mathematics and Computers in Simulation, Vol 80, No.6, pp 1324-1336.
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