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Abstract:  The paper discusses about crack analysis in magnetoelectroelastic solids. 2-D crack problems 
are considered. There are applied various electromagnetic boundary conditions on the crack-faces. The 
definition of the electromagnetic boundary conditions on the crack-faces plays an important role in the 
crack analysis of magnetoelectroelastic materials. Two extreme cases - the fully permeable and the fully 
impermeable crack surfaces are analysed. The finite element method is applied to solve crack boundary 
value problems. The coupling among magnetic, electrical and mechanical fields is adequately considered 
in magnetoelectroelastic solids subjected to external loads. 
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1. Introduction 

Smart materials are widely used in practical engineering applications. It can be observed coupling 
effect between mechanical and electric fields (piezoelectric), mechanical and magnetic fields 
(piezomagnetic), mechanical and electric and magnetic fields (magnetoelectroelactic), etc. An electric 
potential is produced when a piezoelectric element is under stress or strain loading. This effect is 
called direct piezoelectric effect. When a mechanical deformation is produced by an electric field, it is 
a converse piezoelectric effect (Song at al., 2006). Magnetoelectric materials induce the 
polarization by a magnetic field, or conversely induce magnetization by an electric field Nan 
(1994). These materials are promising for a wide range of applications, such as four-state 
memories, magnetic field sensors and magnetically controlled optoelectric devices. It is 
important to analyze magnetoelectroelastic material for fracture resistance, because it is brittle. The 
electric and magnetic boundary conditions on the crack-faces are determined by the measure of 
shielding of the electric and magnetic fields. Thus, it is important to define the electromagnetic 
boundary conditions on the crack-faces. There are frequently considered two extreme cases. The first 
it is the fully permeable crack. This type does not shield the electric and magnetic field. The second 
one is fully impermeable crack, which shields the electric and magnetic field completely. The 
boundary value problems with cracks can be solved by several methods. For example finite element 
method (Enderlein at al., 2005), boundary element method (García-Sánchez et al., 2007) and meshless 
method (Sládek at al., 2008). 

2. Basic equations of magnetoelectroelasticity  

The coupling of the mechanical, electrical and magnetic fields in magnetoelectroelastic solids 
(Nan, 1994) is given by the following constitutive equations 

 ij ijkl kl kij k kij kc e E d H! "= # #  (1) 
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where 
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The strain tensor ij! , electric field vector iE and magnetic intensity vector iH are related to 

independent variables - displacement , electrical potential and magnetic potential denoted by iu  , 

! and µ , respectively.  iiij BD ,,!  represent the stress tensor, the electric displacements, and the 

magnetic inductions, respectively. Material parameters are the elastic coefficients ijklc , dielectric 

permittivities jkh and magnetic permeabilities jk! . Finally, kije , kijd and jk!  are the coefficients 
for the piezoelectric, piezomagnetic, and magnetoelectric coupling, respectively. 

For plane-deformation problems the constitutive equations can be written in a matrix form (Parton 
and Kudryavtsev, 1988) 
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Governing equations for magnetoelectroelastic body under static loading conditions are given by 
the force equilibrium and the scalar Maxwell’s equations as 
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 , 0ij j iX! + =  (10) 

 , 0j jD !" =  (11) 

 , 0j jB =  (12) 

where iX  and !  represent the body force vector and the volume density of free charges, respectively. 

The Dirichlet boundary conditions of magnetoelectroelastic body are given as follows 

 i iu U= ,     on     u!"  

 V! = ,     on     v!"  

 Aµ = ,     on     a!"  (13) 

where iU , V and A  are prescribed the mechanical displacement, the electric potential and the 
magnetic potential, respectively. 

The Neumann boundary conditions of magnetoelectroelastic body are 

 i ij j it n T!= = ,     on     t!" ,     u t!" = !" #!"  

 i iq Dn Q= =! ,     on     q!" ,     v q!" = !" #!"  

 i is B n S= = ! ,      on     s!" ,     a s!" = !" #!"  (14) 

where iT , Q , S  and in are the traction vector, the normal component of the electric displacement 
vector, the normal component of the magnetic induction and unit outward vector components. 

A general boundary value problem in a magnetoelectroelastic solid is uniquely specified by the 
governing equations (10)-(12), constitutive equations (7)-(9) and boundary conditions (13)-(14). The 
FEM is applied to solve above stated boundary value problem. For this purpose, we will utilize the 
COMSOL computer code for multi-physics problems. 

The governing equation for a transient dynamic problem with inertial and damping term is written 
in COMSOL as 

 , , .a tt a te u d u F+ +!" =      in " (15) 

where u is independent variable. The mass and damping coefficients are denoted by ae  and ad , 
respectively, and will be excluded in the static analysis. The “scalar” F is the source term. The “flux 
vector” ! is represented by equation  

 c u u! "# = $ + %  (16) 

in which coefficients c  , !  and !  are the diffusion coefficient, the flux convection coefficient and 
the flux source term, respectively.  

The symbols used in Eq. (15) can be represented for particular governing equations (10)-(12) 
completed with the constitutive equations (7)-(9) as 
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3. Finite element formulation  

Introducing the virtual displacement iu!  , virtual electric potential !"  and virtual magnetic 
potential !µ , equations (10)-(12) can be rewritten as 

 , , ,( ) ( ) 0ij j i i j j j jX u d D d B d! " "# "µ
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The equation (21) as well as the boundary equations (14) and relations (4)-(6) can be represented 
equivalently as 
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The field variables iu  , ! and µ  can be approximated by the shape functions uN  , N!  and Nµ  
and the unknown nodal degrees of freedom ku , k! and kµ  
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Usually, the matrices uB  , B!  and Bµ  are introduced for simplification 

 u u uN=B D ,    N! ! !=B D  ,     Nµ µ µ=B D  (24) 

where the transposed matrices to uD , !D  and µD  have been defined in Eqs. (17)-(19). Recall that the 

matrices uD , !D  and µD  involve the derivatives with respect to global Cartesian coordinates 1x  and 

3x , which are expressed in terms of the derivatives with respect to the local coordinates on elements as 
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The element energy functional is resulted from equations (22), (24) and (1)-(3) 
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and assembling the matrices into global matrix, the discretized equations can be written as 
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 =Kx F  (31) 

where K  is the stiffness matrix of the structure, x  is the vector of unknown quantities and F  is the 
loading vector. 

 
4. Boundary conditions for crack-face 

In this paper, two extreme boundary conditions on crack faces are considered, i.e., the fully 
impermeable and the fully permeable conditions. The electrical and magnetic boundary conditions on 
crack faces along 1x  for fully impermeable example are given as 

 3 3( ) ( ) 0c cD D+ !"#$ = "#$ =x x  

 3 3( ) ( ) 0c cB B+ !"#$ = "#$ =x x  (32) 

where c
+!" and c

!"# are the upper and the lower crack faces, respectively. 

The fully permeable crack face boundary conditions along 1x  are given by 

 3 3( ) ( )c cD D+ !"#$ = "#$x x , ( ) ( ) 0c c! !+ "#$% " #$% =x x  

 3 3( ) ( )c cB B+ !"#$ = "#$x x , ( ) ( ) 0c cµ µ+ !"#$ ! "#$ =x x  (33) 

5. Numerical examples  

  It is considered a magnetoelectroelastic straight strip. It can be solved as a 2-D problem under 
plane deformation conditions with the width of the strip 2.5w m= and height 3h m= . The central 
crack with length 1a m=  along the axis 1x is assumed. On the top and bottom surfaces of the strip, we 
consider either single pure loadings (a pure electrical load 0D , a pure magnetic load 0B , a pure 
mechanical load 0! ) or combinations of such pure loadings, while the lateral sides are traction free 
and with vanishing normal components of the electric displacement and magnetic induction vectors. A 
quarter of the strip is analyzed because of bi-axial symmetry. On the symmetry cuts, the normal 
displacements and tangential traction vector components are vanishing as well as the normal 
components of the electric displacement and magnetic induction vectors disappear. Thus, on the 
bottom of the quarter of the strip except the crack face we have 3 0u = , 1 0t = , 0Q = , 0S = , while on 
the right lateral 1 0u = , 3 0t = , 0Q = , 0S = . As long as the impermeable crack is assumed, Q and S  
are vanishing on the surface of the crack, while in the case of  permeable crack the potentials ! and 
µ are vanishing on both crack faces as long as no potentials are applied on the crack surface.  

   For the magnetoelectroelastic material, we chosen the 3 2 4BaTiO -CoFe O composite (Li, 2000 ): 

 10 2
11 22.6 10c Nm!= " , 10 2

13 12.4 10c Nm!= " , 10 2
33 21.6 10c Nm!= " , 10 2

44 4.4 10c Nm!= " , 

 2
15 5.8e Cm!= , 2

31 2.2e Cm!= ! , 2
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 9 1
11 5.64 10 ( )h C Vm! != " , 9 1

33 6.35 10 ( )h C Vm! != " . 

 1
15 275.0 ( )d N Am != , 1

31 290.2 ( )d N Am != , 1
33 350.0 ( )d N Am != , 

 12
11 5.367 10 /Ns VC! "= # , 12

33 2737.5 10 /Ns VC! "= # . 
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 6 1
11 297.0 10 ( )Wb Am! " "= # , 6 1

33 83.5 10 ( )Wb Am! " "= #  

The quarter of the strip is covered by 8400 linear quadrate finite elements. 

In Figs. 1-4, the numerical results are given for all considered cases of single loadings: (i) pure 
mechanical load 0 1Pa! = ; (ii) pure electrical load 2

0 1 /D C m= ; (iii) pure magnetic load 
2

0 1 /B Vs m= . Fig. 1 shows the distribution of  the electric potential along the crack face for the 
fully impermeable crack condition. It can be seen that the electrical potential is negative, if a pure 
electrical load is applied. A similar behaviour can be observed for the magnetic potential (Fig.2) on the 
crack face under fully impermeable crack conditions, but the negative magnetic potential is appears if 
a pure magnetic load is applied and its magnitude is smaller than the value corresponding to a pure 
electrical load.  

More interesting is the crack opening displacement shown in Fig. 3. and Fig.4. For the fully 
impermeable crack faces (Fig. 3.), a considerable opening of crack is caused by a pure magnetic 
loading and a pure electrical loading, though it is still slightly lower than in the case of a pure 
mechanical loading. For the fully permeable crack faces, however, the inverse behaviour is observed, 
when the main opening is caused by a pure mechanical loading, while the crack opening displacement 
is negative (crack closure) under a pure magnetic loading. 

  
Fig. 1. Variation of the electrical potential on the crack face for the  fully impermeable crack condition 

under a various loads. 

  
Fig. 2. Variation of the magnetic potential on the crack face for the  fully impermeable crack condition 

under a various loads. 
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Fig. 3. Variation of the crack displacement for the fully impermeable crack condition under a various 
loads. 

  

Fig. 4. Variation of the crack displacement for the fully permeable crack condition under a various 
loads. 

  
Fig. 5. Influence of the electromagnetic conditions on the crack displacement under a combined load. 
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Fig. 6. Deformation of the quarter of the strip in direction 3x  for the fully permeable crack condition 
under combined load. 

In the last example (Fig.5. and Fig. 6.), combined loading by mechanical load 8
0 10 Pa! =  with 

electrical load 2 2
0 10 /D C m!=  and magnetic load 2

0 10 /B Vs m=  are applied. The influence of 

the crack electromagnetic boundary conditions on the crack opening displacement 3u along the crack 
surface is shown in Fig. 5, when a combined loading is applied to the strip. A larger crack opening 
displacement appears in the case of fully impermeable electro-magnetic boundary conditions on the 
crack faces. Fig. 6. illustrates the displacements 3u in a quarter of the strip under combined loading for 
the fully permeable crack conditions. 

6. Conclusions  

2-D crack problems in homogeneous magnetoelectroelastic composites are analyzed by finite 
element method using the commercial code COMSOL. The relevant governing equations are realized 
within the general framework for the partial differential equations. The mechanical and 
electromagnetic responses are studied under pure and/or combined mechanical and electro-magnetic 
loadings with assuming either permeable or impermeable electro-magnetic boundary conditions on the 
crack surface.  

The coupling among the mechanical and electro-magnetic fields is confirmed by induced 
mechanical and electro-magnetic responses induced by pure single (pure mechanical, or electrical, or 
magnetic) loadings as well as by combined loadings. The crack opening displacements are dependent 
on the electro-magnetic boundary conditions applied on the crack surface. It has been found that the 
magnetic loading leads to crack closure.  

 

References  
Song, G., Sethi, V., Li H.-N. (2006) Vibration control of civil structures using piezoceramic smart materials: A 

review. Engineering Structures 28, , 1513-1524.  
Nan, C.W. (1994) Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases, Phys. Rev. B 

50  6082-6088. 
Enderlein, M., Ricoeur, A., Kuna, M. (2005) Finite element techniques for dynamic crack analysis in 

piezoelectrics, International Journal of Fracture 134,  191-208. 
Parton, V.Z., Kudryavtsev, B.A. (1988) Electromagnetoelasticity, Piezoelectrics and Electrically Conductive 

Solids. Gordon and Breach Science Publishers, New York,. 
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