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Abstract:  Vibration of machines is an unwanted phenomenon, and it is usually of interest to eliminate it. 
There are various means to be used in order to reach the goal, where the utilization of the electromagnet 
augmented by an external shunt circuit is analyzed in the paper. The magnetic force is used to introduce 
additional electromagnetic damping into vibrating mechanical system. The hysteretic losses and eddy 
currents are included in the model, to take into account more realistic dynamic behaviour of the system. 
The mathematical model of the controller is derived using lumped parameter approach. The parameters 
are assumed from an experimental set-up using and an industrial type of electromagnet. Considering the 
harmonic excitation of mechanical system, a steady-state response and performance of the controller is 
analyzed. Simulation results show the influence of  introduced electromagnetic damping on the dynamical 
response of the system. 
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1. Introduction 

 

In rotating machinery, the resonance phenomena can cause severe problems or even a failure of 
components. In order to avoid it, a vibration control need to be implemented, e.g.: 

- Eliminating the coincidence of operation frequency with resonance; 

- Introduction of mechanical damping. 

Furthermore, active and semi-active methods of vibration control, i.e. capability to adjust the 
controller’s properties, can be implemented in vibration reduction as well. Piezoelectric, electro-
dynamic and electro-magnetic actuators are widely used for such a control strategy, as presented in 
(Bishop, 2002; Giurgiutiu & Lyshewski, 2009). Energy dissipation by a shunt circuit damper 
combined with piezoelectric elements is discussed in (Hagood & von Flotow, 1990; Giurgiutiu 
& Lyshewski, 2009; Preumont, 2011). In the vibration control of large machinery, utilization of 
piezoceramics is not an optimal choice, since the material is brittle and does not withstand large 
strains. Furthermore, the manufacturing costs and requirements on high voltage amplifiers are also 
drawbacks in large scale applications (Bishop, 2002; Giurgiutiu & Lyshewski, 2009). 

On the other hand, electromagnetic and electrodynamic vibration controllers are capable to operate 
at larger amplitudes of vibration, too. Some applications of vibration control of cantilever beams using 
these elements are published by Gospodari! et al. (2007); Cheng & Oh (2009); Niu, Xie & Wang 
(2009); Brezina et al. (2011). The vibratory energy damping using an electromagnetic element 
connected to a shunt resistance is analyzed in Gospodari! et al. (2007), Niu et al. (2009), Brezina et al. 
(2011). Cheng & Oh (2009) use a set-up in which the current generated in a coil is dissipated by a 
shunt circuit, consisting of a battery of series RLC circuits. Utilization of the eddy currents damping in 
vibration control is explored in Sodano & Inman (2007). 

This contribution, based on authors’ previous work (Darula et al., 2011), analyses the 
electromagnetic actuation principle. It has been shown that the controller of interest is capable to 
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introduce damping, as well as alter damped natural frequency of the oscillatory system. In order to 
model more realistic system, internal electrical losses are introduced, which were not considered in 
(Darula, et al., 2011). It is shown that electrical losses significantly influence the system properties in 
respect to a loss-less system. 

2. Concept of the vibration controller 

The use of an industrial circular type electromagnet with a ferromagnetic yoke fixed by a spring-
damper system, as shown in Fig. 1, is analyzed. A coil of Nw turns with a wire resistance RW is 
energised by a direct current IDC and it generates a static magnetic field. Exposing the yoke into 
vibration, described by a mechanical displacement w(t), the air gap width d(t) changes in time, which 
causes variation of an air gap reluctance.  

According to Faraday’s law (Fitzgerald et al., 2003), change in reluctance, i.e. a change of primary 
magnetic flux, is responsible for induction of alternating voltage ui(t) in the coil, where it forces a 
current ii(t) to flow in the electrical shunt circuit.  

From the Lenz’s law, the direction of ii(t) is opposite to IDC, i.e. the magnetic field generated in the 
coil (ii(t) contribution) opposes the primary field generated by IDC. Using the shunt resistance RS, the 
current ii(t) is dissipated.  

 
Fig. 1: Schematics of the analyzed electro-mechanical system (flux line is denoted dashed) 

To extend the model derived in (Darula, et al., 2011), the material losses within the electrical 
circuit, which are supposed to influence the performance of the controller, are also taken into account: 

1.  Hysteresis losses in the core material, 

2.  Eddy currents in the core material. 

As was shown in (Darula et al., 2012), the eddy current losses are frequency dependent.  

The core loses can be modelled as a parallel loss resistance RL to the electromagnet coil inductance 
(Fig. 1). Due to frequency dependence of losses, the resistance RL is frequency dependent (Darula et 
al., 2012). 

3. Simplified analysis of the electro-magnetic circuit 

The magnetic system is modelled using a lamped parameter approach, where one can identify three 
elements (Fig. 2(a)): 

- Source of magnetic flux – a coil of NW turns energized with the current i(t) = IDC + ii(t); 

- Air gap reluctance (!AG) – magnetic resistance caused by the air gap, where the width of air gap 
is d(t) and the permeability of the free space !0; 

- Core reluctance (!C) – magnetic resistance of the iron core and armature with relative 
permeability !rC. From experimental results (Darula, 2008) a constant value of the 
permeability !rC " 500 was estimated and used further. This is an acceptable 
simplification of the real situation. 
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From Ampere’s law (e.g. in (Fitzgerald, et al, 2003)), assuming a constant core cross-section SC, 
the magnetomotive force F#(t): 
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where H
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is magnetic field intensity vector, )(2 tdll C += is total magnetic flux line path and B(t) the 
magnetic field induction. Due to geometry of core and yoke of length lC, the middle magnetic flux line 
is crossing twice the air gap of width d(t), as seen from Fig. 1. 

The source of DC voltage, UDC, is assumed to be ideal, i.e. its internal resistance is neglected. 
The time variation of total magnetic flux "T(w(t), i(t)) in the coil is represented by the induced voltage 
ui(t). From Ohm’s law we can write for the electric circuit (Fig. 2(b)):  
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The total magnetic flux is in fact the induced voltage ui(t), as given by the Faraday’s induction law 
(Bishop, 2002; Fitzgerald, et al, 2003; Giurgiutiu & Lyshewski, 2009): 
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where Sw is the coil winding cross-section and B(t) is the time variable magnetic induction (magnetic 
field density) in the air gap. 

From Eq. (2)-(3) can be concluded, that in the electric circuit of Fig. 2(b) two voltage sources are 
present acting in against each other. The circuit can be divided in respect to its behaviour into: 

- the response to the DC voltage source: UDC = (Rs + Rw)IDC; 

- the response to the induced AC voltage: ii(t) = ui(t)/RT(f), at given frequency f, where RT(f) is the 
bracketed term in Eq. (2), which is frequency dependent. 

Since material losses are included in electrical circuit, the loss term in the magnetic model can be 
neglected, which simplifies derivations. Furthermore, neglecting also fringing effects (sufficiently 
small air gaps are assumed), the magnetic induction B(t) can be derived from Eq. (1): 

[ ]
( )[ ])(1

)(
2

)( iDCw

0

0

t
tiIN

d
tB

!"
µ

++
+

=  (4)   

using scaling coefficients dC = lC/(2µrC), # = [d(t) - d0]/d0, $ = dC/d0. The parameter d0 represents the 
static air gap width for a defined IDC. To make the problem tractable, let us assume further |w(t)| << d0, 
i.e. |#(t)| << 1. 

   
(a) (b) (c) 

Fig. 2: (a) magnetic loop, (b) equivalent electric circuit, (c) mechanical system  

In the static case, i.e. ii(t) = 0 and #(t) = 0, the static magnetic field in the air gap becomes: 
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which is function of both the air gap width d0, as well as the magnetising DC current IDC. 
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Assuming a harmonic excitation of mechanical system, a steady state response of the system is of 
interest. The analysis of a transition phase is beyond the scope of this article. The steady-state is 
governed by two time variables: 

- the air gap width #(t), which influences reluctance in the magnetic circuit; 

- induced current ii(t), due to magnetic field variation. 

As was derived for a similar electromagnetic system in (Darula et al., 2011), assuming |ii(t)| << IDC and 
|#(t)| << 1, the dynamical response of the electro-magnetic system can be expressed combining Eqs. 
(2) to (4) as: 
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where the term in the square bracket is inductance L0 of the electromagnet coil with the ferromagnetic 
core at air gap of width d0.  

4. Calculation of the acting magnetic force 

The electromagnetic force, called the Maxwell‘s pulling force, is given (Bishop, 2002; Fitzgerald, et. 
al., 2003; Giurgiutiu & Lyshewski, 2009; Meyer & Ulrych, 2009): 
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The magnetic pulling force is acting through the central part of the core of cross-section SC, as well as 
through the torus of the pot-type core, assumed to have the same cross-section. Substituting the 
expression for B(t) from Eq. (4) and introducing the inductance L0 from Eq. (6), following holds: 
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From Eq. (8), the quadratic dependence of the electromagnetic force on the magnetomotive force F#(t) 
(Eq. (1)), i.e. on the total current flowing in the electrical circuit, iT(t) = IDC + ii(t), can be noticed. It is 
also inversely proportional to the square of the dynamic relative air gap #(t). As pointed out in Stein, et 
al (2011), there is a limit in the magnetic pulling force extent. If the total current iT(t) exceeds a critical 
value IC, dependent on mechanical configuration, the magnetic pulling force would dominate over the 
elastic force. This would result in full attraction of the yoke to the electromagnet and the oscillatory 
motion would hence cease. Further, despite the difference in the areas Sw (cross-section of coil) and Sc 
(cross-section of core), it can be stated that the most of the magnetic flux is flowing through the 
ferromagnetic core because the magnetic resistance of the air, 2"!AG is !rC, i.e. 500–times larger than 
that one of the core, !C. Hence, the ratio ! = SC/Sw # 1. 

In order to solve Eq. (8) analytically, it is advantageous to apply linearization in the vicinity of the 
operation point using first two terms of a power series. Hence: 
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The magnetomotive force is given by applying fundamental electromagnetic laws of Eqs. (1) and (3): 
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where for the magnetic induction, a total time derivative of Eq. (6) has to be substituted.  

In further analysis, let us focus to the frequency domain, which can provide more information 
about dynamic response then time domain can. Therefore, let us introduce the respective phasor 
representation in respect to a supposed harmonic excitation force tjeFF a

0

~ != , where %a represents 
angular frequency. Then: 
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Substituting the dynamic magnetic induction phasor B~ !j
DeBB =  and the relative air gap width phasor 

tt eeeE !"! # j!j
0

j~ =  into Eq. (6) and some re-arrangement following is valid:  
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which is the relationship between #(t) (the relative air gap) and the B(t) (the induced magnetic field in 
the air gap due to yoke vibrations), expressed in the complex (phasor) form. 

Substituting Eq. (12) into Eq. (11) the magnetomotive force becomes: 
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Having expressed the magnetomotive force in the complex form, Eq. (13) can be inserted into Eq. (9) 
transformed into the complex plane. This allows to introduce a complex magnetic force phasor MT

~F . 
According to Eqs. (8) and (9), the magnetic force is proportional to square of the magnetomotive force 
F#. Therefore, the magnetic force phasor will contain also higher harmonics of %a. This is a well 
known phenomenon in electrical engineering (Bishop, 2002; Fitzgerald, et al., 2003; Giurgiutiu & 
Lyshewski, 2009; Mayer & Ulrych, 2009). Hence: 
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with: 
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The components of the total magnetic force under harmonic excitation emerge by explicitly expressing 
the particular low order components: 

- A static component for n = 0: 
2
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- A component at the angular frequency %a (n = 1): 
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- A second harmonic component at the angular frequency 2"%a (n = 2): 
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which is coupled to mechanical motion by excitation amplitude #0
2.  

-  Higher order harmonic components being of the order of |#|n, where n $ 3. Because of |#| < 1, 
these can be neglected. 
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5. Simplified analysis of the coupled system in the complex plane 

Let us analyse the static deflection of the analysed SDOF oscillatory system loaded by the mass of the 
yoke of mass mm (Fig. 1). The yoke is at a distance d0* from the upper plane of the de-energised 
electromagnet core.  Energizing the electromagnet by the DC current IDC, the exerted static magnetic 
force FM0 elongates the spring further and a static equilibrium position in the distance d0 is attained. 
Equilibrium is described as (Bishop, 2002; Rao, 2004): 
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If an external excitation force FE(t) of harmonic course, described as FE(t) = FE0 sin(%at), is acting 
onto the mass mm additional dynamic components of the Maxwell’s pulling force FMi come into action. 
Then the equation of motion of the SDOF oscillatory system (Fig. 2(c)) is (Darula, et al., 2011): 
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Lets turn into the complex domain, i.e. let us describe the external harmonic excitation FE(t) by the 
complex force phasor t!FF aj

0e
~
= . The steady state response is of interest, i.e. all transient phenomena 

(electric and mechanic) are extinct. The response is assumed to be harmonic with the same angular 
frequency "a, i.e. the complex relative air gap width in the form tt eeeE aj!j

0
aj~ !"! #= . Then, Eq. (20) in 

non-dimensional form becomes: 
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where: 

- 0a !!=!  is the non-dimensional frequency scaled with respect to natural frequency of the 
mechanical system; 

- mkS
2
0 =!  is the square of the natural frequency of the SDOF mechanical system; 

- CSS bb=! is the damping ratio, where mkb sC 2=  is the critical damping coefficient, 

- M1
~F  and M2

~F  are the above derived first and second harmonics of the magnetic force. 

The left hand side of Eq. (21) represents the oscillation of a general SDOF system, i.e. without 
action of any external forces. The external forces (excitation and magnetic force components) are on 
the right hand side of the equation.  

Let analyze just the influence of the first harmonics of magnetic force (Eq. (17)) on the dynamics 
of the coupled system. The influence of the first harmonics is by far the largest and the most 
important. The influence of the higher harmonics is acknowledged; however will not be analysed. By 
introducing the formula into Eq. (21) and re-arranging, following is obtained: 
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The term in round parenthesis on the right-hand-side has a physical dimension of N/m, i.e. from 
mechanical point of view it represents a ‘stiffness’ associated with the static magnetic field, kM: 
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Taking a dimension-less ratio of the magnetic field stiffness kM to the mechanical stiffness ks, 
& = kM/ks, Eq. (22) is modified to become: 
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The left hand-side of Eq. (24) resembles the linear second order operator of Eq. (21), albeit with the 
addition of the last term, containing all the electrical parameters. After further re-formulation: 
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with: 
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The derived equations are valid for any excitation angular frequency "a in the working range of 
the vibration controller. Further the coil reactance at angular frequency "0, X0 = "0%L0 can be 
introduced and related to the total circuit ohmic resistance RT in the following way:  
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The complicated formula on the left hand side of Eq. (27) is the complex displacement transmissibility 
of the coupled system, )(~ !G , which has to be compared with the displacement transmissibility of the 
original, purely mechanical system, which is described by the left hand side of Eq. (21). 

Comparing Eq. (27) with the left hand side of Eq. (21) we may conclude: 

- The natural frequency of the modified oscillatory system (first left-hand-term term of Eq. (27)) 
is influenced by the electrical parameters of the electric circuit – total circuit 
resistance RT and coil reactance X0; by the static air gap width d0 and by the 
magnetising DC current IDC. The equivalent natural angular frequency of the coupled 
system is lower than the natural angular frequency "0 of the original (purely 
mechanical) one system. Hence de-tuning occurs, whose extent is controlled by the 
IDC magnitude, entering the dimension-less variable #, and by shunt resistance RS, 
embedded in the total circuit resistance RT; 

- Additional damping is introduced to the mechanical system damping $s, described by the last 
term in the left-hand-side of Eq. (27), which is controlled by the IDC, RS and X0, too. 
The last term consists of the original system damping ratio $s and an additional 
damping ratio, which can be termed additional ‘electro-magnetic damping ratio’ $EM: 

It is seen that the properties of the electrical components of the system markedly influence its 
vibration control performance. The total circuit resistance RT(f) has already been introduced in Eq. (2), 
after Fig. 2(c): 
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where the coil losses resistance RL is assumed, following the results presented in Darula et al. (2012):  
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where parameters RE, representing the eddy current loses and RH the hysteretic losses, which are 
linearly frequency dependent (RH(f) = 'f). The parameters were estimated from experiments (Darula, 
2008). Estimation of numerical values of the parameters is presented in Darula et al. (2012). Then: 
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In formula (30) just the shunt resistance RS is available for control. 

After substitution of expression (30) into Eq. (27), the extent of de-tuning and additional electro-
magnetic damping can be quantified. The above obtained formulas can be illustrated in graphical form 
using the Matlab® simulation environment. The simulation is done for a particular case, addressed in 
Darula (2008): inductance L0 = 4.95 H for air gap width d0 = 0.75 mm. The loss properties of the 
electromagnet coil were identified in Darula et al. (2012). Following values were used: DC winding 
resistance Rw = 34.9 &; eddy current losses ReE = 1000 &; hysteresis losses constant ' = 90 &/Hz. 
The equivalent mechanical system properties were assessed as mm = 51.7 kg (load + joke mass); 
ks = 3.25"106 N/m and damping ratio $ = 0.025. This leads to the natural frequency f0 = 39.9 Hz 
("0 = 250.7 rad/s, % = 1.00). The excitation force amplitude is set at 20 N and the excitation frequency 
is varied by ± 20 % from the mechanical system natural frequency to visualise the variation in the 
resonance peak position on the frequency axis due to the electro-magnetic influence. The shunt 
resistance RS was varied from the value RS = 0 & (short circuited coil), up to RS = 1"106

 & (1 M&). 
A three-dimensional map of the FRF modulus dependence )(~ !G  on the RS value is depicted in Fig. 3.  

 

 
Fig. 3: Three-dimensional surface map of the FRF displacement modulus in respect to  % and R. 

In bold the FRF of the sole mechanical part; in red the course of the FRF maximum, corresponding to 
the de-tuned natural frequency of the coupled system as a function of Rs  

The bold black curve is the displacement FRF of the oscillatory system without the electromagnet, 
while the red curve indicates the variation of the FRF peak maximum, corresponding to the de-tuned 
frequency ratio % in respect to changing RS in the range (0 &, 1 M&) (on a logarithmic scale).  

It is interesting to assess the extent of de-tuning and displacement FRF attenuation in respect to the 
variation of the shunt resistance RS. In Fig. 4(a) the dependence of the frequency ratio % is depicted; 
while in Fig. 4(b) the modulus of the coupled system G~  is presented. From both figures it is seen, that 
the extent of de-tuning is not large, attaining at most % = 0.955 (fD0 = 38.1 Hz) for 
R = 1 M& ( infinity, while for a more realistic value of RS = 5 k& the de-tuning is to % = 0.965 
(fD0 = 38.5 Hz). The attenuation of displacement transmissibility for this particular case is from 
G0 = 0.1641 (for the solely mechanical system) to Ginf = 0.0447 for R = 1 M&, or GR = 0.0470 for the 
shunt resistance RS = 5 k&. This is a 3.49–fold attenuation at the damped natural frequency of the 
original system, or by some 10.9 dB. The utmost attenuation for R = 1 M& would be 3.67–times, i.e. 
by 11.3 dB. From Fig. 4 it is seen, that the influence of the shunt resistance above some value to the 
vibration attenuation, as well as to the extent of the de-tuning is limited. This is due to the fact, that the 
resistance RS is connected in parallel to the coil internal loss resistance Re (see Eq. (30)) and so cannot 
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influence much the total resistance RT by increasing the value of RS to infinity. The obtained results 
are quite different from those for a system with neglected electromagnet losses, as presented, e.g. by 
Darula et al. (2011). 

 

  
(a) (b) 

Fig. 4: Dependence of: (a) detuned frequency ratio % and (b) FRF displacement modulus )G)on RS 

6. Conclusion 

An electro-magneto-mechanical system for vibration control of an SDOF oscillatory system, subject to 
external harmonic excitation, was analysed in a simplified, linearised form. The fundamental equation 
of motion (Eq. (25)) was derived, which includes the non-linear magnetic force (Maxwell’s pulling 
force), described by Eqs. (9) and (10). The extra magnetic force causes: 

- Generation of higher harmonics, 

- Change (decrease) in oscillatory system natural frequency, i.e. de-tuning of the system, 

- Inclusion of additional electro-magnetic damping, so decreasing the vibration transmissibility. 
The attainable extent of the de-tuning and of the additional electro-magnetic damping was 
illustrated for a particular case using parameters determined experimentally for an industrial 
electromagnet. It is markedly limited by the electrical parameters (coil inductance, and 
equivalent loss resistance) of the electromagnet. 
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