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Abstract:  The paper deals with non-stationary laminar flow solution of an incompressible fluid. The 
Navier-Stokes equation is used for the description of this motion and it is solved by means 
of an expansion into a series of eigenmodes of vibration. A mathematical model, which assumes planar 
flow with specific boundary conditions, can be generalized to the spatial problem with different types 
of boundary conditions. The influence of the individual eigenmodes of vibration on the form of unsteady 
flow is evident. 
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1. Introduction 

The paper proposes a solution to a non-stationary laminar flow of incompressible fluid using 
an expansion into a series of eigenmodes of vibration. Pressure drop is chosen as the boundary 
conditions for this problem. After finding the equation for the velocity function, individual 
eigenmodes of vibration, partial sums and their time development were then drawn. 

2. Problem definition 

The Navier-Stokes equation (without the convective term) was used as the mathematical model of the 
aforementioned flow: 
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!
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!!!
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!!!!
!!!!

! !! (1) 

While solving this equation, only the case of the planar flow in a pipe was considered (fig. 1): 
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!!!!

! !! (2) 

The flow with the pressure drop was considered and hence the pressure at the ends of pipe was 
chosen as the boundary conditions: 

 !! ! ! ! !! !! ! ! !! ! ! 

!! ! ! ! !! !! ! ! !! ! ! 
(3) 

In order to solve this problem, initial conditions for velocity and pressure are required. Initial 
velocity was chosen as zero and initial pressure was prescribed by using a general function !, which 
depends only on the position in axis !!. 

 ! ! ! ! ! !!! ! ! ! !!! ! ! 

!! !!! ! ! !! 
(4) 
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Fig. 1: Planar pipe 

On comparing the dependencies of velocity and pressure with the variables in equation (2), it was 
found out that pressure derivative is a time dependent function. Using boundary conditions (3), the 
equation for pressure was obtained: 

 ! !!! ! ! !! ! !
!! ! ! !! !

!
!!!!! (5) 

Equation (2) was then transformed into the following form: 

 !!!
!"

! !!
!!!!
!!!!
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!! ! ! !! !

!"
!! (6) 

The solution of the homogeneous part of this equation was considered to be in the form: 
 !! !!! ! ! !!"!! !! !! (7) 

where ! is the eigenvalue and ! is the eigenvector of velocity. 

Using equation (7), the partial differential equation (6) was transformed to the ordinary differential 
equation: 

 !" ! !!
!!!
!!!!

! !!! (8) 

with zero boundary conditions for the eigenmode shape of velocity: 

 !! ! ! ! ! ! !!!

!! ! ! ! ! ! !!!
(9) 

The solution of equation (6) is discussed in further detail in section 2.3. The following sections 
give important properties of eigenvalue and eigenmode shapes of velocity, which are later used to find 
the solution. 

2.1. Eigenvalue and eigenmode shapes of velocity 

In order to solve equation (8), it is required to find out more information about the form 
of eigenvalue !. An estimate was performed which showed that the eigenvalue is negative real 
number: 
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Another fact that needs to be considered is that the eigenvectors are orthogonal. This was observed 
after comparing equation (8) for the !-th and !-th term of eigenmode shapes of velocity !! and !!!: 

 !! ! !! ! !! !!!!!!!!
!

!
! !!! (11) 

where !! is the eigenvalue for the !-th term of eigenmode shapes of velocity. 

From this equation two conclusions can be made: 

• Eigenvalues are equal for the same indices: 
 !! ! !!,    for  ! ! !. (12) 

• Eigenvectors are orthogonal real functions: 

 !! !!!!!!!!
!

!
! !!! (13) 

2.2. Determination of the velocity function 

The general solution of homogeneous partial differential equation of second order (8): 

 !" ! !!
!!!
!!!!

! !!! (14) 

has the form: 

 ! !! ! ! !"#!
!
!
!!! ! ! !"#!

!
!
!!! !!!!!! ! !!! (15) 

Using the first boundary condition (9), that is: 
 !! ! ! ! ! ! !!! (16) 

it was found out that constant ! is zero. Hence the eigenmodes will be only a function of hyperbolic 
sine: 

 ! !! ! ! !"#!
!
!
!!! !! (17) 

From the second boundary condition the following expression was obtained 

 !"#!
!
!
!! ! !!! (18) 

Using the property (10) that the eigenvalue is a real number, an expression for constant ! was 
derived: 

 ! ! !!
!"
!

!

!! (19) 

Using the boundary conditions, an equation for the eigenvalue and also the form of the 
eigenmodes was found. However, the constant ! in the function for eigenmode shapes of velocity has 
still to be determined. This constant was found by using the orthogonality condition: 

 !! !!!!!!!!
!

!
! !!! (20) 
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After that, the constant for the !-th term of eigenmode shapes of velocity was found to be of the 
form: 

 !! ! !!!!
!
!
!! (21) 

Final form of the eigenmode shapes of velocity is solely the sine function: 

 !! !
!
!
!!"#

!"
!
!!! !! (22) 

2.3. Eigenmode expansion 

In the previous section, only the homogeneous part of equation (8) was discussed. Here the complete 
solution of equation (6) will be considered: 

 !!!
!"

! !!
!!!!
!!!!

!
!! ! ! !! !

!"
!! (23) 

accompanied by the boundary and initial conditions: 

 
!! ! ! ! !!! !! !! ! ! !!!

!! ! ! ! !!! !! !! ! ! !!!

! ! ! ! !! !! !!! ! ! !!!

(24) 

Solution of this equation was approached by using an expansion into a series of eigenmodes 
of vibration in the form: 

 !! !!! ! ! !! ! !!! !!

!

!!!

!! (25) 

Substituting this form of velocity function into equation (23) the following equation was obtained: 

 !!!!!!
!"

! !! !!! !
!

!!!

!!! !
!! ! ! !! !

!"
!! (26) 

This equation can be simplified according to the orthogonality (13) and orthonormality (20) 
condition to the form: 

 !!! !
!"

! !! !!! ! !
!
!
!
!
!"
!
!! ! ! !! !

!"
! ! ! !! ! !! (27) 

This last equation accompanied by the initial condition: 
 ! ! ! ! ! ! ! !!! (28) 

was solved using Laplace transformation. During an inverse transformation, convolution theorem was 
used and for the next computation constant change of pressure !! was considered. 

Expression for time dependent function !! !  is: 

 !! ! !
!
!
!

!!

!" !!"#
! ! ! !! ! ! ! ! !!!! !!"!! (29) 
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Substituting the equation for time dependent function (29) back into equation (25) the following 
expression was obtained: 

 !! !!! ! !
!!!!"
!!!"#

!
! ! !! !
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! ! ! !!!! !!"#
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!
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!

!!!

!! (30) 

where eigenvalue is: 

 !! ! !!!
!"
!

!

!! (31) 

2.4. Result comparison  

The result obtained was confirmed by comparing the maximal velocity achieved through the 
calculation (30) with the exact value. But nevertheless it was a restricted case. The considered time 
interval ! was large enough and the equation was approximated only by the first eigenmode: 

 !!
!
!

!
!
!!
!
!!

!"#
!!! !

!!

!!!"!!"#
!!!! (32) 

While exact value (!ob, 2002) for velocity in the middle of pipe is: 

 !!
!
!

!
!!

!!!"#
!!!! (33) 

Mentioned results differ only by 4%, hence it can be said that approximation by the first 
eigenmode is quite accurate. By increasing the number of eigenmodes, a more precise value for the 
maximal velocity will be obtained. 

2.5. Graphical assessment 

For the following graphical assessment these values for the variables were used: 

! ! !!!"!!!! 

! ! !"!!! 

!! ! !""!!"! 

! ! !"""!!" !!!!! 

! ! !"!!!!! ! !!!! 

From the equation (30) it can be easily seen that the velocity profile is composed only from odd 
eigenmode shapes of velocity, because the time dependent function !! !  for even eigenmodes is 
zero. The first four eigenmodes are drawn in the following figures: 

                
         (a) First                                                                            (b) Second 
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(c) Third                                                                       (d) Fourth 

Fig. 2: Eigenmodes of vibration 

Final form of velocity function is given by equation (30). The partial sums of this series are plotted 
against time ! ! !""!!. This stretch of time was chosen randomly, however it was not chosen to be 
long enough for the stabilization of the velocity profile. 

        

           
Fig. 3: The partial sums of velocity function 
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From these graphs, it can be shown that after summing seven eigenmodes, the shape of the 
velocity profile is getting closer to profile of laminar flow despite the fact that the profile is not 
completely stabilized. Odd eigenmodes cause symmetric velocity profile which is expected by our 
case of start-up flow. 

Next the time dependence of the velocity when twenty eigenmode of vibrations are summed was 
then observed. 

 

                

           
Fig. 4: Time dependence for ten odd eigenmode shapes of velocity 
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2.6. Comparison 

From literature, it is common knowledge that for a time step long enough, the flow is considered as 
stationary, hence equation (2) has the form: 

 !"
!!!

! !!
!!!!
!!!!

! !! (34) 

Analytical solution of this equation with zero boundary condition for velocity on walls of the pipe 
is a quadratic function of coordinate !!: 

 !! !! !
!!
!!"

!!! ! !!! ! (35) 

This expression can also be obtained from equation (30) for a long enough time !: 

 !! !! !
!!!!"
!!!"#

!
!
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!!!"#
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!
!!!

!

!!!
!!!!!!

! (36) 

For summation of the series equation (Kadlec & Kufner, 1969) was used: 

 !"# !"
!!

!

!!!

!
!!!! ! !!!! ! !!

!"
! (37) 

This sum of series holds for all summing indices, so it is necessary to transform this expression to 
only odd summing indices. To obtain only odd summing indices, the property that sum over all 
summing indices is equal to sum over odd and even indices was used. Hence using equation (37), 
expression (35) was obtained, which is the same to the analytical solution of equation (34). 

3. Conclusions 

This paper described the solution of the Navier-Stokes equation for non-stationary flow 
of an incompressible fluid. This solution is based on an expansion into a series of eigenmodes 
of vibration. The proposed approach considers the solution of velocity function as a combination 
of eigenmode shapes of velocity and time dependent function. Specific solution to the presented 
problem depends only on the odd eigenmode shapes of velocity since even eigenmodes were zero. The 
graphical part of this paper illustrated the achieved results. 
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