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Abstract: We consider the problem of wave propagation in periodically heterogeneous composite plates
with high contrasts in elastic coefficients. The unfolding method of homogenization is applied to obtain limit
plate models. Due to the high contrast ansatz in scaling the elasticity coefficients of compliant inclusions,
the dispersion properties are retained in the limit when the scale of the microstructure tends to zero. We
study two plate models based on the Reissner-Mindlin theory and on the Kirchhoff-Love theory. We show
that, when the size of the microstructures tends to zero, the limit homogeneous structure presents, for some
wavelengths, a negative “mass density” tensor. This means that there exist intervals of frequencies in which
there is no propagation of elastic waves, the so-called band-gaps.
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1. Introduction

We consider problems of wave propagation in periodically heterogeneous plates with high contrasts in
elastic coefficients. Following the approach of Ávila et al. (2008) and Rohan et al. (2009) we apply the
unfolding method of homogenization Cioranescu et al. (2008) to obtain limit plate models. Two cases
are studied: 1) according to the Reissner-Mindlin theory the plate deformation is described by the mid-
plane deflections and by rotations of the plate cross-sections which account for the shear stress effects;
2) using the Kirchhoff-Love theory, the plate deflections are described by the bi-harmonic operator, thus
neglecting the shear effects. In both cases we assume such heterogeneities which depend on the mid-
plate coordinates only, but do not change with the transversal coordinate. As an example we can consider
plates with soft cylindrical inclusions. Under such restrictions the homogenization is applied to the plate
equations with the elastic coefficients defined as periodically fluctuating functions associated with the
heterogeneities. Due to the high contrast ansatz in scaling the elasticity coefficients of inclusions, as
employed in Ávila et al. (2008); Rohan and Miara (2011); Cimrman and Rohan (2009, 2010), dispersion
properties are retained in the limit when the scale (the characteristic size) of the microstructure tends to
zero.

We show that, when the size of the microstructures tends to zero, the limit homogeneous structure
presents the phononic effect: for some wavelengths, a “mass density” tensor can be negative, see Rohan
and Miara (2011). This means that there exist intervals of frequencies in which there is no propagation
of elastic waves, the so-called band-gaps.

2. Heterogeneous plates

We consider heterogeneous structures associated with a given scale, say ε0 > 0, which is the ratio
between the characteristic lengths of the microscopic and the macroscopic description. There exist se-
quences of solutions of the plate problems characterized by scales ε → 0. For any fixed ε > 0 we shall
rely on the following essential material properties.

The fourth order, bi-dimensional elasticity tensor CC = (Cijkl) is symmetric Cijkl = Cklij = Cikjl

and positive definite. In particular, for the sake of simplicity, we consider isotropic materials only, which
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are characterized by two Lamé parameters. The plate model according the Reissner-Mindlin theory
involves also the shear modulus, here denoted by γ > 0, which is associated with one of the Lamé
parameters. The mass density ρ is positive.

We treat periodic composite materials, so that the material coefficients CC, γ and ρ are periodically
oscillating functions in R2; it will be described in detail in Section 3.1.

2.1. The Reissner–Mindlin plate model

The plate model can be derived by an asymptotic analysis of the elasticity problem imposed in Ω×] −
h, h[, where Ω ⊂ R2 is an open bounded domain with regular boundary ∂Ω and h is the plate thickness.
In the time interval [0, T ] the plate undergoes the following two modes of displacements: the in-plane
“membrane modes” described by U = (U1, U2) : [0, T ] × Ω̄ −→ R2, and the “off-plane” transversal
deflections W : [0, T ] × Ω̄ −→ R; moreover the cross-sections undergo rotations Θ = (Θ1,Θ2) :
[0, T ]× Ω̄ −→ R2.

The displacement and rotation (U,W,Θ) of the plate satisfy the equilibrium equations




hρ
d2

dt2
U − hdivσ(U) = T in Ω ,

hρ
d2

dt2
W − hdivτ (W,Θ) = F in Ω,

h3

3
ρ

d2

dt2
Θ− h3

3
divσ(Θ) + hτ (W,Θ) = M in Ω,

U = 0 , W = 0 , Θ = 0 on ∂Ω .

(1)

with τ and σ expressed by the following linear constitutive laws:



τ (W,Θ) := γ(∇W −Θ), shear stress due to relative (to mid-plane) rotation of cross-s.
σ(Θ) := CCe(Θ) , normal stress due to bending induced by rotations
σ(U) := CCe(U) , normal stress due to the in-plane membrane modes.

(2)
In general, we may consider a general decomposition of ∂Ω with respect tothe above displacements and
rotations into the “Neumann” and “Dirichlet” parts of the boundary. However, for the sake of simplicity,
we consider the fully supported and clamped plate.

The linearized deformation tensor e(Θ) = (eij(Θ)) is given by the symmetric gradient e(Θ) =
1/2 (∂jΘi + ∂iΘj), i, j = 1, 2.

We shall consider solutions in the form of harmonic stationary waves induced by harmonic loading

T(x, t) = t(x) exp{iωt} , F (x, t) = f(x) exp{iωt} , M(x, t) = m(x) exp{iωt} , (3)

where ω is a given frequency, so that

U(x, t) = u(x) exp{iωt} , W (x, t) = w(x) exp{iωt} , Θ(x, t) = θ(x) exp{iωt} . (4)

On substituting (3) into (1), we get the following equations governing the amplitudes (u, w,θ):




−ω2hρu− hdivσ(u) = t in Ω ,

−ω2hρw − hdivτ (w,θ) = f in Ω,

−ω2h
3

3
ρθ − h3

3
divσ(θ) + hτ (w,θ) = m in Ω,

u = 0, w = 0, θ = 0 on ∂Ω.

(5)

2.2. The Kirchhoff–Love plate model

The motion of the plate is given by the out-off plate deflections W and by the in-plane (membrane
modes) displacements U. Let us recall that this kind of plate does not admit any relative rotation of the
plate cross-sections w.r.t. the plate mean surface, therefore, it is convenient rather for thin plates.
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We shall consider solutions in the form of harmonic stationary waves induced by harmonic loading,
see (3). Thus, in analogy with (4), for a given fixed frequency ω, the amplitudes (u, w) satisfy





− ω2hρu− hdivσ(u) = t in Ω ,

h3

3
∇∇ : Σ(w)− ω2ρ

(
hw − h3

3
∇ · ∇w

)
= f −∇ ·m in Ω ,

w = 0, n · ∇w = 0, u = 0 on ∂Ω ,

(6)

where ∇∇v = (∂2v/∂xi∂xj) is the 2nd order differential operator and stresses σ and Σ are given in
terms of the elasticity tensor, as follows:

σ(u) = CCe(u) ,

Σ(w) = CC∇∇w = σ(∇w) .
(7)

In the rest of the paper we consider just the out-of-plane “deflection” and “rotation” modes of plate
deformation, since, in the linear theory used here, there is no coupling between these modes and the
“membrane” modes described by displacements u. The “membrane” modes are driven by the same type
of equations as in the 3D elasticity which was discussed in papers Ávila et al. (2008); Rohan et al. (2009);
Cimrman and Rohan (2009, 2010).

3. Homogenization

We consider a plate made of a heterogeneous material, whereby its periodic structure is defined in the
reduced 2D configuration directly. As usually, we use small parameter ε describing the characteristic
size of the microstructure. The solutions of (5) and (6) depend upon ε, which will be indicated by the
superscript �ε. Using asymptotic analysis, the limit model for ε → 0 can be obtained which describes
behaviour of the homogenized material. Details on the homogenization procedure are out of the scope in
this short paper, interested readers are refered to associated publications Ávila et al. (2008); Rohan and
Miara (2011), (Cioranescu et al., 2008).

3.1. Strongly heterogeneous periodic composite

We assume the plate Ω is constituted by the matrix Ωm and by periodically distributed inclusions; their
collection forms domain Ωc. Thus, we consider

1. Ωm,Ωc ⊂ Ω ⊂ R2 and Ωm ∩ Ωc = ∅,

2. Ω = Ωε
m ∪ Ωε

c ∪ Γε, where Γε = Ωε
m ∩ Ωε

c .

3. matrix: Ωε
m is connected. As the result, inclusions Ωε

c are disconnected.

The microstructure is generated as a periodic lattice using the representative periodic cell (RPC)
denoted by Y . For simplicity, we consider a rectangular RPC with the following definition: Y =
Π2

i=1]0, ȳi[⊂ R2 (R being the set of real numbers) where ȳi > 0 can be chosen so that |Y | = 1.
The RPC is decomposed in coherence with Ω, i.e. Ym ⊂ Y and Yc = Y \Ym are strictly contained in Y .

The coordinates of any point in Ω can be split into a “coarse” part ξ = (ξi) and a “fine” part y = (yi),
also called fast and slow evolving parts: For a given finite ε > 0 we have the unique decomposition

x ≡ ε
[x
ε

]
Y

+ ε
{x
ε

}
Y

= ξ + εy , where y =
{x
ε

}
Y
∈ Y and ξ = ε

[x
ε

]
Y
∈ Ω ,

(8)

where ξi = εkiȳi, i = 1, 2, ki ∈ Z is the lattice coordinate. Such a decomposition is unique, once
Y ∈ R2 is defined. Note that [zi]Y is the integer part of zi/ȳi and {zi}Y is the remainder.
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Material parameters CCε = (Cε
ijkl) and γε are periodically oscillating. For the sake of simplicity we

shall consider only piecewise constant material. To retain the phononic effect in the homogenized plate,
following the analogous approach employed in the case of phononic 3D periodic structures, we introduce
the scaling of the material coefficients in the inclusions:

CCε(x) = χε
c(x)ε2CCc + χε

m(x)CCm ,

γε(x) = χε
c(x)ε2γc + χε

m(x)γm ,
(9)

We recall the standard properties of constant tensors CCc,CCm and coefficients γc, γm which usually are
considered: there exist constants 0 < m < m <∞ independent of ε such that (recall |e|2 = eijeij),

Cm
ijkleijekl ≥ m|e|2 ∀e = (eij) ∈ R2×2, eij = eji , sup

x∈Ω
|Cm

ijkl| ≤ m ,

m ≤ γm ≤ m ,
(10)

and in analogy for CCc and γc. The rotation-deflection coupling coefficient γε(x), i.e. the shear stiffness,
is only relevant for the Reissner-Mindlin plate model. It is worth noting that CCε(x) and γε(x) are positive
definite for ε > 0 only.

The density of the two materials is assumed to be of the same order of magnitude, therefore we shall
consider

ρε(x) = χε
c(x)ρc + χε

m(x)ρm ,

ρ ≤ ρs ≤ ρ , (11)

where ρ, ρ are given positive real numbers.

Some preliminaries The homogenized model was obtained using the periodic unfolding method which
is based on the unfolding operator Tε : v ∈ L1(Ω;R) → L1(Ω × Y ;R) defined, as follows, see Cio-
ranescu et al. (2008),

Tε(v)(x, y) = v(ε
[
x
ε

]
+ εy) , x ∈ Ω, y ∈ Y .

We shall use H1
#(Y ) and H2

#(Y ), the spaces of periodic (scalar) functions,

H1
#(Y ) = {v ∈ H1(Y ) | v is Y-periodic } ,

H2
#(Y ) = {w ∈ H2(Y )| w,∇yw are Y-periodic} ,

(12)

and the associated space of vector-valued functions H1
#(Y ) = (H1

#(Y ))2.

3.2. Reissner-Mindlin phononic plate

We apply the unfolding method of homogenization to obtain a limit model of the R-M plate for ε → 0.
The elastic standing waves are described by the solution of the following problem with the oscillating
material coefficients: For a given frequency, find triplet (wε,θε) ∈

(
H1

0 (Ω)
)3 such that

− hω2

∫

Ω
ρε
(
wεzε +

h2

3
θε ·ψε

)
+ h

∫

Ω
[γε(∇wε − θε)] · (∇zε −ψε) +

h3

3

∫

Ω
[CCεe(θε)] : e(ψε)

=

∫

Ω
(fzε + m ·ψε) ,

(13)

for all (zε,ψε) ∈
(
H1

0 (Ω)
)3.

Here we present the homogenized “macroscopic” model which involves homogenized coefficients
descibing the effective mass and elasticity coefficients.
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The standing waves propagating in the homogenized plate are described in terms of amplitudes
(θ, w) ∈ H1

0(Ω)× ∈ H1
0 (Ω) which satisfy the following equations:

− ω2

∫

Ω

(
h3

3
[M(ω2)θ] ·ψ + hN (ω2)wz

)

+
h3

3

∫

Ω
[IDex(θ)] : ex(ψ) + h

∫

Ω
[G(∇xw − θ)] · (∇xz −ψ)

=

∫

Ω

(
[R(ω2)m] ·ψ + S(ω2)fz

)
∀ψ ∈ H1

0(Ω), z ∈ H1
0 (Ω) ,

(14)

where ID is the 4th order tensor of homogenized elasticity coefficients see (21), G is the 2nd order
tensor given in (22) describing the shear stiffness of the plate, M(ω2) and N (ω2) are homogenized
mass coefficients. Below we explain how these coefficients are computed.

Characteristic microscopic responses. The homogenized coefficients are expressed in terms of the
characteristic responses, the so-called corrector basis functions. We proceed in analogy with Ávila et al.
(2008) where the 3D elasticity dynamic problems were considered. For the sake of brevity we employ
the elasticity bilinear form

cYm (ũ, ṽ) =

∫

Ym

(CCmey(ũ)) : ey(ṽ) . (15)

The following characteristic responses depend exclusively on properties of the stiffer material in Ym; two
problems for the so-called corrector basis functions are to be solved:

• Find θ̃
rs ∈ H1

#(Y )/R such that

cYm

(
θ̃
rs

+ Πrs, ṽ
)

= 0 ∀ṽ ∈ H1
#(Ym) . (16)

• Find w̃k ∈ H1
#(Ym)/R such that

∫

Ym

γm∇y(w̃k + yk) · ∇y z̃ = 0 ∀z̃ ∈ H1
#(Ym) . (17)

To express the homogenized mass coefficients, we need the eigenfrequencies and eigenfunctions
which describe vibration of the inclusions clamped into the matrix. Two eigenvalue problems with
discrete spectra are solved:

• Find (Θr, λr) ∈ H1
#0(Y )× R for r = 1, 2, . . . such that (note Θr = (Θr

i ))

∼
∫

Yc

[CCcey(Θr)] : ey(ψ) = λr ∼
∫

Yc

ρΘr ·ψ ∀ψ ∈ H1
#0(Y ) , (18)

• Find (W r, µr) ∈ H1
#0(Yc)× R for r = 1, 2, . . . such that

∼
∫

Yc

[γc∇yW
r] · ∇yζ = µr ∼

∫

Yc

ρW rζ ∀ζ ∈ H1
#0(Yc) . (19)

The eigenfunctions are normalized, so that

∼
∫

Yc

ρΘr ·Θs = δrs , ∼
∫

Yc

ρW rW s = δrs . (20)
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Homogenized coefficients. The homogenized plate elasticity is represented by the following two ten-
sors:

• Homogenized “in-plane” elasticity ID = (Dijkl):

Dijkl = cYm

(
θ̃
kl

+ Πkl, Πij
)

= cYm

(
θ̃
kl

+ Πkl, θ̃
ij

+ Πij
)
.

(21)

The symmetric expression is obtained due to (16).

• Homogenized shear elasticity G = (Gkl) introduced as

Gkl =

∫

Ym

γm∂yl (w̃k + yk)

=

∫

Ym

γm∇y(w̃k + yk) · ∇y(w̃l + yl) .

(22)

The symmetric expression is obtained due to (17).

Inertia of the homogenized plate is represented by the following two mass coefficients, see Ávila et al.
(2008); Rohan et al. (2009) for derivation of the analogical mass coefficients in 3D elasticity problems:

M(ω2) = I ∼
∫

Y
ρ−

∑

r

ω2

ω2 − λr ∼
∫

Yc

ρΘr⊗ ∼
∫

Yc

ρΘr ,

N (ω2) =∼
∫

Y
ρ−

∑

r

ω2

ω2 − µr
∣∣∣∣∼
∫

Yc

ρW r

∣∣∣∣
2

.

(23)

Influence of the load is weighted by the load coefficients which are computed by similar formulae

R(ω2) = I −
∑

r

ω2

ω2 − λr ∼
∫

Yc

ρΘr⊗ ∼
∫

Yc

Θr ,

S (ω2) = 1−
∑

r

ω2

ω2 − µr ∼
∫

Yc

ρW r ∼
∫

Yc

W r .

(24)

As the result of our homogenization procedure, we obtain Problem (14) where (w,θ) are the local
amplitudes of harmonic waves excited by harmonic “homogenized” loads with frequency ω. Let us note
that, when for some ω the tensor M(ω) is positive definite and the scalar N (ω) is positive, then also
free structure vibrations (i.e. stationary waves in domain Ω) can be excited. However, M∗(ω) or N (ω)
may not by positive (definite) for some ω; for the “membrane mode”, cf. Ávila et al. (2008) and Rohan
et al. (2009), we proved existence of whole frequency intervals – the band gaps – where the positivity
of M(ω) fails. An analogical result can be proved for the coupled rotational and deflection modes: in
each interval of frequencies ω2 ∈ (λr, λr+1) given by (18) there exists a sub-interval of frequencies
for which M(ω) is not positive. In such intervals, free vibration “rotation modes” are restricted, or
completely suppressed. Also for the shear modes associated with the deflection w and the corresponding
mass N (ω) < 0, in each interval of frequencies ω2 ∈ (µr, µr+1) there exist subintervals with restricted
or suppressed wave propagation.

Thus, the band gaps for stationary waves can be predicted just upon analyzing positive definiteness
of M(ω) and N ∗(ω). Although for the membrane mode u such band gaps prediction holds also for
guided plane waves in infinite plates, see Rohan et al. (2009), for the coupled modes q := (θ, w) the
dispersion analysis is more complex. Interesting applications can be found Vasseur et al. (2008).
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3.3. Kirchhoff-Love phononic plate

In analogy with the Reissner-Mindlin plate model (13), we consider the elastic standing waves, cf.
Ghergu et al. (2007) for the plate homogenization. We find solutions to the following problem with
the oscillating material coefficients: For a given frequency, find deflection wε ∈ H2

0 (Ω) such that

−ω2h

∫

Ωε
c

ρcwεv − ω2h

∫

Ωε
m

ρmwεv − ω2h
3

3

∫

Ωε
m

ρm∇wε · ∇v − ω2h
3

3

∫

Ωε
c

ρc∇wε · ∇v

+
h3

3

∫

Ωε
m

CCm∇∇wε : ∇∇v + ε2h
3

3

∫

Ωε
c

CCc∇∇wε : ∇∇v

=

∫

Ω
(fv + m · ∇v) ∀v ∈ H2

0 (Ω) .

(25)

To present the homogenization result for ε→ 0, we proceed in analogy with the case of the Reissner-
Mindlin plates. Using the unfolding method of homogenization Cioranescu et al. (2008) and obtain the
following equation for the transversal deflections w ∈ H2

0 (Ω) such that

−ω2h

∫

Ω
ρ̄wv − ω2h

3

3

∫

Ω
(M(ω2)∇w) · ∇v +

h3

3

∫

Ω
(ID∇∇w) : ∇∇v

=

∫

Ω

(
[R(ω2)m] · ∇v + fv

)
∀v ∈ H2

0 (Ω) ,

(26)

where ρ̄ is the average density of both material components situated in Y . Above ID is the 4th order
homogenized bending stiffness tensor defined below in (31) and M(ω2) is the homogenized mass tensor
computed using a similar expression to (23), see (32). The “effective material parameters” are defined in
terms of the characteristic microscopic responses.

Characteristic microscopic responses. In contrast with the Reissner-Mindlin plates, the cross-section
rotations in the Kirchhoff-Love theory are fully determined by the gradients of deflections; consequently
only two instead of four microscopic problems must be solved. The corrector basis function w̃kl ∈
H2

#(Ym) solves the following equation
∫

Ym

[
CCm∇∇yy(w̃kl + Πkl)

]
: ∇∇yyṽ = 0 ∀ṽ ∈ H2

#(Y ) , (27)

where Πkl = ykyl. To compute the homogenized mass tensor, one needs to solve the local problem: find
(λr,ϕr) ∈ R×W(Yc) satisfying

∫

Yc

[CCc∇yϕ
r] : ∇yϑ = λr

∫

Yc

ρϕr · ϑ ∀ϑ ∈ W(Yc) , (28)

where we employ the spaces of rotation-free vector fields:

W(Yc) = {w ∈ H1
#(Yc)| ∇y × w = 0} . (29)

Obviously, due to the ellipticity of the operator in (28), functions {ϕr}r are orthogonal; we use the
standard normalization ∫

Yc

ρϕr ·ϕs = δrs . (30)

Homogenized coefficients The homogenized Kirchhoff-Love plate model involves the following ma-
terial coefficients defined in terms of the characteristic responses just introduced:

• Homogenized elastic coefficients ID = (Dijkl)

Dijkl =∼
∫

Ym

[CCm∇∇yy(w̃kl + Πkl)] : ∇∇yyΠij

=∼
∫

Ym

[CCm∇∇yy(w̃kl + Πkl)] : ∇∇yy(πij + Πij)

(31)

where the symmetric expression follows due to (27);
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• Homogenized mass tensor M = (Mij)

M(ω2) = I ∼
∫

Y
ρ−

∑

r≥1

ω2

ω2 − λr ∼
∫

Yc

ρϕr⊗ ∼
∫

Yc

ρϕr . (32)

• Homogenized load coefficient R = (Rij)

R(ω2) = I −
∑

r≥1

ω2

ω2 − λr ∼
∫

Yc

ρϕr⊗ ∼
∫

Yc

ϕr . (33)

By virtue of the right-hand side expression in (32), M(ω2) can be negative, or negative semi-definite
for some frequencies ω. In such a case, wave propagation can be restricted or even suppressed for modes
characterized by the deflection gradientψ := ∇w being the eigenvector associated with the non-positive
eigenvalue of M(ω2). However, the theory explained in Ávila et al. (2008) for the standard 3D elasticity
must be adapted because the first left hand side term in (26) does not change its sign and contributes to
the positive inertia even for negative M(ω2).

4. Conclusions

We presented homogenized models of wave propagation in strongly heterogeneous plates, considering
the Reissner-Mindlin (R-M) and the Kirchhoff-Love (K-L) theories; while the first one takes into account
shear effects related to rotations of the plate cross-section with respect tothe mid-plane, the second theory
neglects this phenomenon, thus, being convenient for thin plates only. The homogenization results reveal
dispersion properties for the homogenized R-M plates: we claim that there exist bands of frequencies
for which the wave equations admit evanescent solutions only, at least for certain polarizations. There
is remarkable difference between the R-M and K-L models: while for R-M the wave polarization is
determined by components of (θ, w), i.e. the rotation and deflection, for K-L there is just a scalar wave
associated with the deflection w. Existence of the band gap effect for the K-L plates is to be examined
in a more detail.

The phononic effect, in general, is associated with vibration modes excited at the “microscopic”
level. By virtue of definitions (23) and (32), these modes determine “positivity”, or “negativity” of
the homogenized masses; in Ávila et al. (2008) we described how this observation can be employed to
predict band gaps. The classical method of the band gap identification is based on analysis of guided
waves, thus, upon construction of dispersion curves; it is necessary to compute frequencies for selected
wave numbers ranging the Brillouin zone, cf. Rohan et al. (2009).

In a forthcoming publication we will study dispersion properties and band gaps distributions for some
basic microstructures. An important restriction of both presented models is related to the transversal
isotropy: here only cylindrical inclusions are admissible, although their shapes can be arbitrary. To treat
more general composite plates with e.g. spheroidal inclusions, the homogenization procedure must be
applied to a 3D composite with thickness proportional to ε, i.e. to the microstructure scale.
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