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Abstract: The notion of strong heterogeneity is considered in the sense of material scaling: the idea is to
study mathematical models where the coefficients of the partial differential equations associated with one
of the material phases depend on the characteristic size ε of the microstructure. This modeling ansatz is
justified to represent high contrasts in material properties of different components; it was applied to study
wave propagation in two-phase elastic composites with “weak” inclusions, where elasticity is scaled by ε2,
or to describe poroelastic behaviour in double-porous media, where permeability of the second porosity is
proportional ε2. Perforated structures can be handled using similar mathematical tools. For homogeniza-
tion of thin structures the scaling is related to the thickness, which leads to reduced spatial dimension of
the problem. This paper summarizes some models developed using the homogenization approach; namely
applications in modelling elastic waves, acoustic transmission and fluid flow in porous media are discussed.
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1. Introduction

In the context of material modeling, the notion of homogenization is related usually to some approximate
treatment of heterogeneous continua designed as mixtures of different constituents. The differences con-
cern just values of the material parameters, or they are more substantial – for instance mixtures of fluid
and solid components are considered. In the mechanical community, the homogenization is often under-
stood in the sense of various averaging techniques based on definition of the RVE, the reference volume
element. The RVE (small enough, but also sufficiently large) is subject to special loadings and the struc-
tural responses allow to compute the effective parameters characterizing the material behaviour. Apart
of this averaging technique, there is the Eshelby theory which can describe behaviour of composites with
elliptic inclusions which do not affect each other, being sparsely distributed at long distances.

The homogenization we have in mind is based on the asymptotic analysis of partial differential equa-
tions describing the continuum behaviour, whereby the small parameter describing the “microstructure
size” influences space variation of the equation coefficients. We focus on problems characterized by
strong heterogeneities — large contrasts in material coefficients; it is shown how the large contrast pro-
nounced by its relationship with the scale may lead to “limit behaviour” which is qualitatively completely
different from the one characterizing the original constituents.

Nowadays there exist several methods which allow one to obtain a model of homogenized continuum,
i.e. by studying asymptotic behaviour of partial differential equations (PDEs) which governs a given
problem characterized by the scale ε. The periodic unfolding which has been introduced and employed
within the homogenization community recently, Cioranescu et al. (2008a), is relatively easy to use for
linear, or quasi-linear problems. It presents a powerful tool for homogenization of locally periodic media
even for those who have merely a little training in functional analysis.

Challenges and limitations. The asymptotic analysis of heterogeneous media provides a modeling
tool which enables to retain important features of the structure (or microstructure) while reducing com-
plexity of the problem in its primary setting. Periodically distributed structural details inducing some
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Plzeň; CZ, e-mail: lukes@kme.zcu.cz
***

m
2012

. 18thInternational Conference
ENGINEERING MECHANICS 2012 pp. 5–21
Svratka, Czech Republic, May 14 – 17, 2012 Paper #97



fluctuations of the physical fields can be condensed into the homogenized coefficients of the limit macro-
scopic (i.e. homogenized) model. Its numerical discretization leads to a computationally tractable prob-
lem which can be solved much cheaper than the original problem discretized with enormously large
numbers of degrees of freedom, such that a huge computational power would be required to obtain a
solution. Obviously, the benefits of “simplified” models obtained by homogenization is even more chal-
lenging when inverse problems are treated, like optimal design of the material structure.

However, the homogenized models describe the asymptotic behaviour, so that the limit behaviour
is just an approximation of the reality which corresponds to a given scale ε0 > 0. Apparently, the
approximation becomes more accurate with decreasing ε0, i.e. when the macroscopic structure involves
more and more repeating microstructural periods.

Once the global response is known, having solved the macroscopic problem, the detail fluctuating
response at the microscopic level can be computed for a given macroscopic position x. This procedure
is often called the microscopic response recovery and is based on the corrector functions. They are
obtained by combining the macroscopic solution at x with the local corrector basis functions. Thus, also
the gradients of the quantity of interest can be obtained, like strains, stresses, or seepage velocities in
porous media.

Models with scale-dependent parameters, like models of large contrast composites as an example,
may amplify some special effects when passing to the limit with ε→ 0. For instance, limit model of the
high contrast elasticity medium exhibits the dispersive behaviour, although the standard composites lead
to a nondispersive medium which, in the limit, is characterized by the homogenized elasticity and by the
mean-value of the density. In contrast, the ε2-scaling of the elasticity coefficients in one of the composite
constituents results in a frequency-dependent homogenized mass coefficients, hence the wave dispersion
is obtained even in the limit ε→ 0.

It is worth to note that the standard homogenized model of composites preserve the homogeneous
medium when all the constituents are identical, i.e. homogenization of a homogeneous material results
in the same material. This is not possible, in principle, for a heterogeneous medium with scale-dependent
parameters which, providing a strong heterogeneity, does not allow to obtain any standard homogeneous
medium in the limit.

The main issues discussed in the paper are the following:

• Homogenization applied in wave propagation problems. Only solid composite materials are
considered here, although an extension for fluid saturated media has been addressed by Mielke and
Rohan (2012). The main focus is in the phononic materials (“band-gap materials”), characterized
by large heterogeneity in the elasticity coefficients, and in the acoustic transmission on perforated
interfaces immersed in the acoustic fluid. Extensions to electromagnetic waves and piezoelectric
composites were treated also Leugering et al. (2010).

• Homogenization of fluid-saturated porous materials (FSPM) with double porosity. It is shown
how different topologies of the microstructure with respect to double porosity lead to qualita-
tively different models. An extension for large-deforming media was proposed, which is based on
linearized subproblems. Finally, homogenization of the fluid perfusion in layered double-porous
medium is described. These topics have applications in modeling the tissue perfusion and in mod-
eling bone poroelasticity.

2. Wave propagation and dispersion in heterogeneous media

In the context of the homogenization method, waves in solid composites and solid-fluid mixtures have
been discussed e.g. in Sanchez-Palencia (1980). The classical treatment of elastic waves leads to van-
ishing wave dispersion in the limit ε→ 0, however, the approach reported by Ávila et al. (2008); Rohan
et al. (2009); Rohan and Miara (2009, 2011) allows to retain the dispersion properties even in the limit;
this is possible due to the strong heterogeneity – large contrast in the elasticity coefficients and the special
scaling ansatz of these coefficients. Besides the elastic composites, some other topics related to wave
propagation were considered, namely those related to piezo-materials and acoustic waves on a perforated
interface.
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Combinations of all these topics are natural and challenging in the view of modeling smart systems
transmitting waves:

• Piezo-phononic materials form a quite natural extension of the purely elastic phononic materials,
they provide even more flexibility in designing smart devices, due to possible interplay between
the electric field and deformations. The homogenization issues were discussed in Rohan and Miara
(2006b, 2009); Cimrman and Rohan (2010).

• It is desirable to extend the acoustic transmission conditions for compliant perforated plates, when
the plate elasticity cannot be neglected. Moreover, the surface acoustic waves propagating along
the interface may interfere with the plate structure – the plate can be constructed as a phononic,
or piezo-phononic material, so that band gaps of the plate can influence qualitatively the acoustic
transmission in the surrounding medium.

• For homogenization of the electromagnetic waves, analogical methods and modeling approaches
are applied, as those introduced in the study of elastic waves. Moreover, in combination with
piezoelectric materials, coupling between acoustic and electromagnetic waves is a relevant issue.

2.1. Phononic materials

The phononic materials (crystals) are multi-phasic (bi-phasic) elastic media with periodic structure and
with large contrasts in elasticity of the phases. Often they are called the phononic band-gap materials
due to their essential property to suppress propagation of elastic waves in certain frequency ranges. The
phononic crystals are used in modern technologies to generate frequency filters, beam splitters, sound or
vibration protection devices (for noise reduction), or they may serve as waveguides. Similar phenomena
in the propagation of the electromagnetic field were studied even before in the context of the photonic
crystals.

The method of homogenization provides a useful modeling tool which allows for prediction of the
band gap distribution for stationary or long guided waves. The “standard computational approach” based
on a full heterogeneous model requires to evaluate the whole Brillouin zone for the dispersion diagram
reconstruction; as the consequence, it leads to a killing computational complexity. On the other hand,
the homogenized model captures the essential features of the phononic material and may serve a good
approximation of the band-gap prediction, while keeping the computational complexity at a very low
level. As an advantage, the homogenized model can be employed in inverse problems like optimal
design of phononic structures.

Periodic strongly heterogeneous material We consider an open bounded domain Ω ⊂ R3 and the
reference (unit) cell Y =]0, 1[3 with an embedded inclusion Y2 ⊂ Y , whereby the matrix part is Y1 =
Y \ Y2. Let us note, that Y may be defined more generally as a parallelepiped. Using the reference cell
we generate the decomposition of Ω into the union of inclusions and the matrix. Inclusions have the size
∼ ε,

Ωε
2 = inter

⋃

k∈Kε
ε(Y2 + k) , where Kε = {k ∈ Z| ε(k + Y2) ⊂ Ω} , (1)

whereas the perforated matrix is Ωε
1 = Ω \ Ωε

2.

We assume that inclusions are occupied by a “very soft material” in the sense that the coefficients
of the elasticity tensor in the inclusions are significantly smaller than those of the matrix compartment,
however the material density is comparable in both the compartments. Such structures exhibit remarkable
band gaps; this was proved by both experiments and modeling. Here, as an important feature of the
modeling based on asymptotic analysis, the ε2 scaling of elasticity coefficients in the inclusions appears;
the following ansatz is considered:

ρε(x) =

{
ρ1 in Ωε

1,
ρ2 in Ωε

2,
cεijkl(x) =

{
c1
ijkl in Ωε

1,

ε2c2
ijkl in Ωε

2.
(2)

In analogy, the PZ phononic materials can be treated.
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Modeling the stationary waves We consider stationary wave propagation in the medium introduced
above. Although the problem can be treated for a general case of boundary conditions, for simplicity we
restrict the model to the description of clamped structures loaded by volume forces. We assume harmonic
single-frequency volume forces F(x, t) = f(x)eiωt, where f = (fi), i = 1, 2, 3 is its local amplitude and
ω is the frequency. Correspondingly, a dispersive displacement field with the local magnitude uε has the
form Uε(x, ω, t) = uε(x, ω)eiωt. This allows us to study the steady periodic response of the medium, as
characterized by displacement field uε which satisfies the following boundary value problem:

−ω2ρεuε − divσε = ρεf in Ω,

uε = 0 on ∂Ω,
(3)

where the stress tensor σε = (σεij) is expressed in terms of the linearized strain tensor eε = (eεij) by the
Hooke’s law σεij = cεijklekl(uε).

Homogenized model Due to the strong heterogeneity in the elastic coefficients, the homogenized
model exhibits dispersive behaviour; this phenomenon cannot be observed when standard two-scale ho-
mogenization procedure is applied to a medium without scale-dependent material parameters. In Ávila
et al. (2008) the unfolding operator method of homogenization (Cioranescu et al., 2008a) was applied
with the strong heterogeneity ansatz (2) and in Rohan and Miara (2006b) the analogous result was ob-
tained for the piezoelectric material with the strong heterogeneity scaling.

The resulting limit equations, as derived in Ávila et al. (2008), describe the structure behaviour at
the “macroscopic”scale. They involve the homogenized coefficients which depend on the characteristic
responses at the “microscopic” scale.

The frequency–dependent homogenized mass involved in the macroscopic momentum equation is
expressed in terms of eigenelements (λr,ϕr) ∈ R×H1

0(Y2), r = 1, 2, . . . of the elastic spectral problem
which is imposed in inclusion Y2 with ϕr = 0 on ∂Y2:

∫

Y2

c2
ijkle

y
kl(ϕ

r) eyij(v) = λr
∫

Y2

ρ2ϕr · v ∀v ∈ H1
0(Y2) ,

∫

Y2

ρ2ϕr ·ϕs = δrs . (4)

To simplify the notation we introduce the eigenmomentum mr = (mr
i ),

mr =

∫

Y2

ρ2ϕr. (5)

The effective mass of the homogenized medium is represented by mass tensor M∗ = (M∗ij), which is
evaluated as

M∗ij(ω
2) =

1

|Y |

∫

Y
ρδij −

1

|Y |
∑

r≥1

ω2

ω2 − λrm
r
im

r
j ; (6)

The elasticity coefficients are computed just using the same formula as for the perforated matrix
domain, thus being independent of the material in inclusions:

C∗ijkl =
1

|Y |

∫

Y1

cpqrse
y
rs(wkl + Πkl)epq(wij + Πij) , (7)

where Πkl = (Πkl
i ) = (ylδik) and wkl ∈ H1

#(Y1) are the corrector functions satisfying

∫

Y1

cpqrse
y
rs(wkl + Πkl)eypq(v) = 0 ∀v ∈ H1

#(Y1) . (8)

Above H1
#(Y1) is the restriction of H1(Y1) to the Y-periodic functions (periodicity w.r.t. the homologous

points on the opposit edges of ∂Y ).
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The homogenized equation of the “macromodel”, here presented in its differential form, describes
the macroscopic displacement field u:

ω2M∗ij(ω)uj +
∂

∂xj
C∗ijklekl(u) = M∗ij(ω)fj , (9)

where M∗ij at the r.h.s. loading term appears due to the volume forces in (3) proportional to the density.

Using this equation, the dispersion of guided waves can be studied, see Rohan et al. (2009). Het-
erogeneous structures with finite scale of heterogeneities exhibit the frequency band gaps for certain
frequency bands. In the homogeneized medium, waves can be propagated provided the mass tensor
M∗(ω) is positive definite, or positive semidefinite; this effect is explained below.

We can derive a homogenized model analogous to (9) also for the piezoelectric phononic (piezo-
phononic) materials with “soft inclusions”, i.e. the scaling (2) is adopted also for parameters of dielec-
tricity, dij , and piezoelectric coupling, gkij . In this case, however, the spectral problem analogous to
(4) comprises an additional constraint arising from electric charge conservation, see Rohan and Miara
(2006b); Cimrman and Rohan (2010) for details.

Band gap prediction As the main advantage of the homogenized model (9), by analyzing the de-
pendence ω → M∗(ω) one can determine distribution of the band gaps; it was proved in Ávila et al.
(2008), cf. Rohan et al. (2009) that there exist frequency intervals Gk, k = 1, 2, . . . such that for
ω ∈ Gk ⊂]λk, λk+1[ at least one eigenvalue of tensor M∗ij(ω) is negative. Those intervals where all
eigenvalues γM of M∗ij are negative are called strong, or full band gaps. In the latter case the negative
sign of the mass changes the hyperbolic type of the wave equation to the elliptic one, therefore, no waves
can propagate. In the “weak” bad gap situation only waves with certain polarization can propagate, as
explained below.

The band gaps can be classified w.r.t. the waves polarization which is determined in terms of the
eigenvectors of M∗ij(ω). Given a frequency ω, there are three cases to be distinguished according to the
signs of eigenvalues γrM (ω), r = 1, 2, 3 (in 3D), determining the “positivity, or negativity” of the mass:

1. propagation zone – All eigenvalues of M∗ij(ω) are positive: then homogenized model (9) admits
wave propagation without any restriction of the wave polarization;

2. strong band gap – All eigenvalues of M∗ij(ω) are negative: then homogenized model (9) does not
admit any wave propagation;

3. weak band gap – Tensor M∗ij(ω) is indefinite, i.e. there is at least one negative and one positive
eigenvalue: then propagation is possible only for waves polarized in a manifold determined by
eigenvectors associated with positive eigenvalues. In this case the notion of wave propagation has
a local character, since the “desired wave polarization” may depend locally on the position in Ω.

In Fig. 1 we introduce a graphical illustration of the band gaps analyzed for an L-shaped inclusions.
If inclusions (considered in 2D) are symmetric w.r.t. more than 1 axis of symmetry, than only strong
band gaps exist. More details on the band gap properties and their relationship to the dispersion of
guided waves were discussed in Rohan et al. (2009).

Piezo-electric (PZ) materials. Homogenization of a standard PZ heterogeneous medium leads to the
effective constitutive law of the standard form, whereby the effective material parameters are computed
for a specific microstructure. However, in Rohan and Miara (2006a) we show that combination of two
standard PZ materials can lead to a new material with unusual and interesting properties (new non-zero
entry in the coupling tensor) — this is the key for designing the so-called metamaterials, cf. Rohan and
Miara (2009); Leugering et al. (2010). The PZ materials with large contrasts (respected by scaling in
analogy with (2)) in all PZ coefficients were considered in homogenization of phononic materials, see
Rohan and Miara (2006b); Cimrman and Rohan (2010). It is worth noting that for HZ the above men-
tioned statements on the structural symmetry do not hold because of the material anisotropy; typically
only the weak band gaps exist (Cimrman and Rohan, 2010).
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Fig. 1: Left: weak band gaps (white) and strong band gaps (yellow) computed for an elastic composite
with L-shaped inclusions, the green bands are propagation zones (the solid and dashed curves describe
eigenvalues of M∗(ω)); Right: the first eigenmode of the L-shaped clamped elastic inclusion.

2.2. Acoustic wave transmission on perforated interfaces

Homogenization can be employed to develop approximate models of various transmission and transport
phenomena on thin interfaces characterized by a “microstructure” (Cioranescu et al., 2008b). In Rohan
and Lukeš (2010b) the homogenization is applied to approximate the acoustic transmission between two
halfspaces separated by an interface formed as a solid (rigid) plate perforated periodically by holes of
arbitrary shapes, so that the two halfspaces are connected. We consider the acoustic medium occupying
domain ΩG which is subdivided by perforated plane Γ0 in two disjoint subdomains Ω+ and Ω−, so
that ΩG = Ω+ ∪ Ω− ∪ Γ0. Denoting by p the acoustic pressure field in Ω+ ∪ Ω−, in a case of no
convection flow, the acoustic waves in ΩG are described by the following equations (ω is the frequency
of the incident wave related to wave number k through the speed of sound propagation c = ω/k),

c2∇2p+ ω2p = 0 in Ω− ∪ Ω+ ,

+ boundary conditions on ∂ΩG ,
(10)

supplemented by transmission conditions on interface Γ0. In Rohan and Lukeš (2010b) such conditions
were obtained by the two-scale homogenization of a layer with an immersed sieve-like obstacle. In
Figure 2 we illustrate such a layer Ωδ = Γ0×]−δ/2, δ/2[⊂ R3 embedded in ΩG = Ω+

δ ∪Ω+
δ ∪Ωδ ∪Γ±δ .

The acoustic medium occupies domain Ωε
δ = Ωδ \ Sεδ , where Sεδ is the solid rigid obstacle which in a

simple layout has a form of the periodically perforated slab. However, the aim of the study by Rohan
and Lukeš (2010b) was to obtain transmission conditions which describe quite general shape of periodic
perforations.

To derive the transmission conditions, the acoustic waves in the layer were subject to asymptotic
analysis w.r.t. size of the perforation ε which is related to the thickness δ = hε, where h > 0 is fixed.
The acoustic potential pεδ satisfies the Helmholtz equation in Ωε

δ

c2∇2pεδ + ω2pεδ = 0 in Ωε
δ ,

c2∂p
εδ

∂nδ
= −iωgεδ± on Γ±δ ,

∂pεδ

∂nδ
= 0 on ∂Sεδ ∪ ∂Ω∞δ ,

(11)

where by nδ we denote the normal vector outward to Ωδ. Assuming convergence of the interface fluxes
(velocities) gεδ → g0 (in a sence), by homogenization ε → 0, convergence of pεδ → p0 is obtained and
(11) transforms into the following equations involving homogenized coefficients A,B, F and the layer
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Fig. 2: Left: global problem imposed in entire domain ΩG before homogenization of the layer Ωδ. Right:
representative cell of the periodic structure. The dark patterns represent the obstacles in the fluid.

porosity f∗,

−∂α(Aαβ∂βp
0) + ω2f∗p0 − iω∂α(Bαg

0) = 0 on Γ0 ,

−iωhBβ∂βp
0 + ω2Fg0 = −iω

1

ε0
[p]+− on Γ0 ,

Aαβ∂βp
0 = 0 on ∂Γ0 ,

(12)

where [p]+−/ε0 is the jump of p relative to the “real” layer thickness hε0 > 0 and is evaluated on Γ0

by the acoustic potential field p in ΩG. To compute A,B, F , microscopic problems have to be solved
in the reference microscopic cell Y ∗ = Y \ S, where domain S represents the obstacle generating the
perforation, see Fig. 2 (right).

For the “global problem” (10), the transmission conditions are presented in an implicit form by
equations (12): they couple [p]+− with normal derivatives ∂p/∂n+ = −∂p/∂n− = −iωg0, whereby p0

describing the “in-layer” wave serves as an internal variable of the model. Out of resonances, p0 vanishes
when (Bβ) = 0, see Fig. 3, Amic #1.

To illustrate influence of the perforation design on the global acoustic response in domain ΩG, in
Fig. 3 the transmission losses for a waveguide fitted with two different perforations on Γ0 is depicted.

3. Fluid saturated porous media (FSPM) with dual porosity

The models of fluid saturated porous media (FSPM) which we have in mind are relevant to the scale
where individual fluid-filled pores are not distinguishable, so that at any point of the bulk material both
the solid and fluid phases are present, being distributed according to the volume fractions, cf. Coussy
(2004); de Boer (2000). The phenomenological description was developed by M. Biot (Biot, 1955); his
model is considered here as a basis for modeling media with large contrasts in the hydraulic permeability
coefficients, thus, presenting the strong heterogeneity. Such a modeling option is related to the notion
of the double porosity (Auriault and Boutin, 1992; Arbogast et al., 1990) which introduces yet another
scale with even smaller characteristic size than the one characterizing the “microscopic level”.

Two important phenomena can be noticed when homogenizing the FSPM:

• In high contrast media, in general, the topology of the microstructure decomposition influences
qualitatively the homogenization result.

• When evolutionary models are homogenized, the fading memory effect of the homogenized con-
stitutive laws arise from the fluid microflow governed by the Darcy law.

Rohan E., Cimrman R., Lukeš V. 11
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Fig. 3: Left: Transmission losses for three perforation types, #1,#2#3; comparison of solutions obtained
for the homogenized transmission conditions (dashed line) with the corresponding direct approxima-
tion of the perforated domains (solid line). Right: Spatial distribution of the acoustic potential in the
macroscopic domain.

3.1. Biot model and double porosity

The Biot model involves three essential constitutive laws: 1) the relationship between the drained solid
skeleton “macroscopic” deformation e(t, x), the fluid pressure in pores p(t, x) and the total stressσ(t, x),
2) the relationship between the variation of the fluid content, skeleton (macroscopic) deformation, and
the fluid pressure, 3) the Darcy law relating the seepage velocity, w(t, x), with “dynamic fluid pressure”,
i.e. the static part p(t, x) and the fluid inertia part. In the DISSERTATION , only quasistatic problems are
studied so that the following form of the equations is relevant:

−∇ · (IDe(u)) +∇ · (αp) = f ,
K−1w +∇p = 0 ,

α : e(u̇) +∇ · w +
1

µ
ṗ = 0 ,

(13)

where ID is the elasticity tensor associated to the drained skeleton, K is the hydraulic permeability (spe-
cific to a given fluid), α is the poroelastic stress coefficient and µ is the Biot modulus which depends
on compressibility of the solid skeleton and fluid. Obviously, the three field formulation can be reduced
to the two field formulation by eliminating w. Further reduction of the model is possible when both the
phases are incompressible, i.e. when 1/µ→ 0 and α→ I.

Double porosity and permeability scaling The double porous media are frequent in nature. Besides
various fissured rocks, the dual porosity is presented by the canalicular network of the so-called matrix
constituting the structure of cortical bone tissue, see Fig. 5, Rohan et al. (2012).

In the dual porosity, the permeability coefficient is proportional to ε2, where ε is the dimensionless
scale parameter. In Fig. 4, the dual porosity is represented by an array of“horizontal” channels of the
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Fig. 4: Left: schematic illustration of the osteon double porous structure. Right: a scheme explaining
the permeability δ2-dependence due to the velocity profile in an array of canals. The total perfused area
S is perforated by canals with total cross-section Tδ (bottom), each canal has the cross-section πρ2δ2;
the square periodic cell is shown (middle) as well as the velocity profile in one canal. (top).

canalicular porosity. It can be shown, Rohan et al. (2012) that if the ratio between the macro-, meso- and
micro- scales is the same, i.e. δ ∼ ε, the scale dependent permeability is ∼ ε2, so that the seepage in the
dual porosity is given by wε = −ε2Kν∇p, where Kν is disproportional to the fluid viscosity.

3.2. Homogenization of FSPM with application in biomechanics

The theory of FSPM has been developed in adherence to applications in civil engineering, oil industry,
mining and rock mechanics. Also the tissue biomechanics presents a new challenging field of applica-
tions, due to large complexity of processes and interactions undergoing in living tissues.

In contrast with soils, rocks and materials used in civil engineering, the biological materials exhibit
much larger organization of their structure. To illustrate the difference, one can consider seepage and
consolidation in moist soils, on one hand, and the sophisticated system of heart muscle perfusion, on the
other hand. In both these cases, the material contains the solid and liquid phases, however, the structure
of pores is very different.

There are several problems in the tissue biomechanics were homogenization with the dual porosity
ansatz can be employed as a convenient modelling tool.

• The smooth muscle tissue model (Rohan, 2006b) is based on the large deforming FSPM with
locally periodic structure. The representative cell contains the fluid-filled inclusion representing
the muscle cell. The cytoskeleton is approximated very roughly as a truss with prestretch corre-
sponding to the cell contraction. The extracellular space (the matrix) represents the dual porosity,
whereby fluid can flow between the matrix and the cell due permeability of the cell surface. Al-
though from the physiological point of view this model is naive, it contains some important fea-
tures and can serve as a basis for further model improvements and investigations of the mechanical
interactions related to various regimes of tissue contraction.

• The compact bone poroelasticity model (Rohan et al., 2012; Rohan and Cimrman, 2011) describes
interactions between deformation of the bone tissue and induced flow in the double-porous struc-
ture consisting of the Havers-Volkmann channels (the primary porosity) and the canaliculi (the
dual porosity). This model is being developed to understand how the flow in the canaliculi pop-
ulated by mechano-sensitive bone cells depends on the macroscopic load, since this phenomenon
influences significantly the bone tissue growth and remodeling.

• The model describing blood perfusion in deforming tissue (Rohan, 2006a; Rohan and Cimrman,
2010; Rohan and Lukeš, 2010a) is relevant to the lower levels of the “perfusion tree”. The two
systems of channels characterize the arterial and venous sectors which exchange the fluid (bood)
through the matrix representing the dual porosity. The model has been extended for the large
deformation using the linearization based on the updated Lagrangian formulation.

• The model of blood perfusion in “layered tissues” (Rohan, 2010) is an attempt to cope with
branching organization of the perfusion tree. The tissue periodicity is confined to two directions

Rohan E., Cimrman R., Lukeš V. 13



Ym

Yc

Fig. 5: Left: a micrograph of the osteon porosity arranged in cylindrical geometry. The Haversian
canals form the center of each osteon bounded by the cement line. The osteon matrix is penetrated by
canalicular porous network arranged almost radially with respect to the osteon axis. (The color image
provided by courtesy of Zbyněk Tonar.) Right: microstructure decomposition w.r.t. the dual porosity:
dark pink: Ωc, light pink: Ωm, and the representative periodic cell Y decomposition.

associated with the layer mean-surface, whereas there is no periodicity in the transversal direction.
Thus, the tissue volume in 3D can be decomposed into several layers and the homogenization
provides several 2D coupled problems, one per each layer.

Two compartment topology of the microstructure The two compartment topology of the microstruc-
ture is convenient for modeling bone tissue. Its structure is formed by Haversian and Volkmann channels
(the primary porosity) and by porous matrix perforated by canaliculi (the dual porosity).

For finite scale ε > 0 domain Ω ⊂ R3 is decomposed into two principal nonoverlapping parts, the
channels Ωε

c and the matrix Ωε
m, so that Ω = Ωε

m ∪ Ωε
c ∪ Γεmc, Γεmc = Ωε

m ∩ Ωε
c is the channel-matrix

interface. Domain Ω is generated as a periodic lattice using a representative periodic cell Y = Yc∪Ym∪Γ,
see Fig. 5 (right), where Yc generating Ωε

c represent the channels of the primary porosity separated from
the matrix Ym = Y \ Yc by interface Γ.

The model of the homogenized bone tissue is obtained using the Biot model (13). Following the
double-porosity ansatz, the permeability Kε is scaled by ε2 in the dual porosity represented by Ym,
namely using the unfolding operator Tε(Kε(x)) = ε2χm(y)Km(y) + χc(y)Kc(y) with y ∈ Y , x ∈ Ω,
where χd, d = m, c is the characteristic function of domain Yd.

The homogenized equations involve stationary and non-stationary homogenized coefficients which
serve as convolution kernels and, thus, are responsible for the fading memory effects. These effects are
induced by microflows in the dual porosity, due to the fluid-structure interaction at the microscopic level.

In order to compute the homogenized coefficients, microscopic problems must be solved, so that the
characteristic responses of the computational cell Y are obtained, see Fig. 6.

All details upon derivation of the homogenized equations can be found in Rohan et al. (2012). The
macroscopic problem can be presented in the weak form: for a.a. t ∈]0, T [ find couple (u(t, ·), p(t, ·)) ∈
V × H1(Ω) (V ⊂ H1(Ω) is determined by kinematic boundary conditions) with initial condition
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Fig. 6: Characteristic response in the reference cell Y – illustration of corrector basis functions (left)
and anisotropy of the permeability in the dual porosity (right).

p(0, ·) = 0, such that
∫

Ω
Eijklekl(u)eij(v) +

∫

Ω

∫ t

0
Hijkl(t− τ)ekl(

d

d τ
u(τ)) dτ eij(v)

−
∫

Ω
(Bij + Pij(0)) p eij(v)−

∫

Ω

∫ t

0

d

d t
Pij(t− τ)p(τ) dτ eij(v) =

∫

∂σΩ
g · v dΓ ,

∫

Ω
(Bij + Pij(0)) eij(

d

d t
u) q +

∫

Ω

∫ t

0

d

d t
Pij(t− τ)eij(

d

d τ
u(τ)) dτ q

+

∫

Ω
Cij∂jp∂iq +

∫

Ω
qM d

d t
p+

∫

Ω
q

∫ t

0
N (t− τ)

d

d τ
p(τ) dτ = 0 ,

(14)

for all v ∈ V0 and q ∈ H1(Ω).

Model (14) was implemented numerically, details on the FE discretization and evaluation of the
convolution integrals can be found in Rohan and Cimrman (2011).

Three compartment topology In perfused tissues the three compartments correspond to two systems
of channels (the arterial and venous sectors) separated by the matrix representing the tissue penetrated
by capillaries which form the dual porosity.

In analogy with the two-compartment model, for finite scale ε > 0 domain Ω ⊂ R3 is decomposed
into three principal nonoverlapping parts, the channels Ωε

α, α = 1, 2 and the matrix Ωε
3, so that Ω =⋃

i=1,2,3 Ωε
i∪Γε23∪Γε13, where Γεα3 are the channel-matrix interfaces. The reference cell Y is decomposed

accordingly: the channels are represented by Y1 and Y2 which are mutually disjoint, i.e. Y1 ∩ Y2 = ∅,
being separated by Y3 = Y \⋃α=1,2 Yα. Obviously, domain Ωε

3 is connected.

The homogenization procedure (Rohan, 2006a; Rohan and Cimrman, 2010) is applied to the Biot
model (13) with the incompressibility constraints, which yields α = 0 and 1/µ = 0. By virtue of the
double-porosity ansatz, the permeability Kε is scaled by ε2 in the dual porosity represented by Y3, so that
using the unfolding operator Tε

(
Kε
ij(x)

)
= ε2χ3(y)K3

ij(y) +
∑

α=1,2 χα(y)Kα
ij(y), y ∈ Y , x ∈ Ω.

As the result of the homogenization, a two-scale system of equations is obtained. Using the Laplace
transformation, the two-scale problem is decoupled: the local microscopic problems are solved in refer-
ence cell Y to obtain the characteristic responses. Consequently, the homogenized coefficients involved
in the macroscopic problem can be evaluated using corrector basis functions, see Rohan and Cimrman
(2010): quantities.

• Eijkl is the elasticity tensor. It expresses the overall elasticity (stiffness) of the dried porous skele-
ton represented by domain Y , thus, including both the porosities.

• Hijkl(t) is the viscosity tensor related to the macroscopic creep and relaxation phenomena; it
expresses the microflow (perfusion) in the dual porosity Y3.
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Fig. 7: Left: a three-compartment periodic structure, Right: the scheme of the microstructure decompo-
sition.

• R1
ij(t) and P̄1

ij are the poroelastic coefficients which reflect two phenomena: the elasticity of the
dried skeleton in Y and permeability of the dual porosity.

• G̃+(t) and G∗ are the perfusion coefficients which control the amount of the fluid exchange between
sectors Y1 and Y2.

• Cαij is the homogenized permeability of the primary porosity in Yα.

The macroscopic perfusion model describes parallel flows through the two channel systems in de-
forming medium. The macroscopic displacement field, u0(t, ·) ∈ V ⊂ H1(Ω), and the two macro-
scopic pressures, p1(t, ·), p2(t, ·) ∈ H1

0 (Ω) satisfy the equilibrium equation (compare with the two-
compartment model (14))

∫

Ω

[
Eijklexkl(u0(t, ·)) +

∫ t

0
Hijkl(t− τ)

d

d τ
exkl(u(τ, ·)) dτ

]
exij(v)

−
∫

Ω
exij(v)

∫ t

0
R̃1
ij(t− τ)[p1(τ, ·)− p2(τ, ·)] dτ

−
∑

α=1,2

∫

Ω

[ |Yα|
|Y | δij + P̄αij

]
pα(t, ·) exij(v) =

∫

∂σΩ
g · v dS ∀v ∈ V0 ,

(15)

and the two balance-of-mass equations for α, β = 1, 2, β 6= α

∫

Ω
Cαij ∂xj pα(t, ·) ∂xi q +

∫

Ω
q G∗ d

d t
(pα(t, ·)− pβ(t, ·))

+

∫

Ω
q

∫ t

0
G̃+(t− τ)

d

d τ
(pα(τ, ·)− pβ(τ, ·)) dτ

+

∫

Ω
q

∫ t

0
R̃αij(t− τ)

d

d τ
exij(u0(τ, ·)) dτ

+

∫

Ω
q

[ |Yα|
|Y | δij + P̄αij

]
d

d t
exij(u0(t, ·)) = 0 , ∀q ∈ H1

0 (Ω) ,

(16)

which govern the fluid flows in the two channels and its redistribution between them. The terms involving
the pressure difference pα − pβ reveal the amount of perfused fluid; while coefficient G∗ is related
to transition effects, the perfusion in a steady state is determined by the convolution term involving
G̃+(t− τ), since G̃+(+∞) > 0.

The three-compartment two-scale model was implemented in the SfePy FE code (Cimrman and et al.,
2011). As an example, in Fig. 8 the pressure and perfusion velocities are displayed for a deforming block
of tissue with microstructure similar to that of Fig. 7, right.
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Fig. 8: Deformed perfused block: macroscopic pressures p1 and p2 displayed by color map at time
tA = 60 s, (a), (c) and tB = 80 s, (b), (d), the associated perfusion velocities are indicated by arrows.
Deformation enlarged for visualization. (Computed by R. Cimrman, 2009)

3.3. Homogenization of perfusion in thin layers

Homogenization can be adapted also for structures where the periodicity is restricted to directions within
a given plane, as pointed out in Section 2.2..

In paper Rohan (2010) we derived a homogenized model of the Darcy flow in a thin porous non-
deformable layer comprising 3 compartments. The reference periodic cell is composed of the matrix rep-
resenting the dual porosity and of two mutually disconnected channels representing the primary porosity.
The resulting model describes macroscopic redistribution of the fluid in the plane to which the thin layer
is reduced. Due to the 3D-to-2D reduction and the two-scale decomposition it leads to computationally
feasible problem which is now implemented in our in-house developed code Sfepy, Cimrman and et al.
(2011).

One of the promising applications of the model is the blood perfusion in the brain tissue, see Fig. 9
(left). Although a detailed morphological study is not completed yet, the following assumptions, however
simplifying, seem to be relevant:

• change of the microstructure with the depth in the tissue (the radial direction), as indicated by two
layers,

• repeated patterns of the microstructure with respect to the tangential direction, so that the periodic
“artificial” lattice can be introduced.

Difficulties in modeling the blood perfusion are inherited form the structure of the vascular system
which forms vascular trees. An “ideal perfusion tree” can be decomposed into several levels (hierarchies)
which can be associated with layers (generated by curved “mean” surfaces); in each of them the vascular
network can be approximated by a (locally) periodic structures, where the “plane periodicity” is related
to the tangent planes of the generating surface. This simplified view of the real complex system give rise
to the idea of decomposing a 3D volume into N layers with a given periodic structure, see Fig. 9 (right),
so that the homogenization procedure can be applied.

Problem formulation Homogenization of the Darcy flow in a heterogeneous layer with double poros-
ity was described in Rohan (2010). In Fig. 9 (right) the layer is depicted schematically: Layer Ωδ =
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Fig. 9: Left: Representative periodic cell of the layer containing two systems channels. Right: The three
compartment heterogeneous layer and the domain and boundary decomposition of the reference periodic
cell Y .

Γ0×] − δ/2, +δ/2[ has thickness δ > 0, whereby Γ0 ⊂ R2 forms the mean surface. On the “upper”
and “lower” boundaries Γδ+ and Γδ−, the fluid exchange with the outer space is controlled by Neumann
conditions defined in terms of fluxes gε± ∈ L2(Γ±). Domain Ωδ consists of three disjoint sectors, the
matrix Ωεδ

M and the two channels Ωεδ
A , Ωεδ

B , which are generated as periodic lattices (with period ε). The
double porosity in the matrix Ωεδ

M is introduced using the standard scaling ansatz for the permeability, as
described in preceding sections.

In order to obtain a limit (homogenized) problem, the perfusion fluxes g±ε must be scaled properly
with respect to ε: we assume that the fluxes through the matrix interface Γ±εM are of the order ε, whereas
fluxes of the channel inlets and outlets are of the order 1. Moreover, local net sources of channels A
and B must be specified. For this we introduce GεD(x′), x′ ∈ Γ0, with D = A,B, to describe the fluid
volume increase per one period ε in the channel compartment D, and assume GεD ∼ ε, i.e. the local
source produced in the channel A, or B due to external inlets/outlets is proportional to the thickness
δ = hε of the layer.

3.4. Macroscopic equation for single layer

The homogenized problem for pressures pA and pB , associated with the channels A and B, describes 2D
parallel flows, in homogenized layer Γ0 ⊂ R2. Each channel system forms a connected domain (so, we
assume at least a small co-lateralization of vessels in the perfusion tree). Two coupled “macroscopic”
equations (one for A and one for B) involve the homogenized coefficients: permeabilities (Kαβ)A,B of
the channels, the transmission G and drainage (Sα)A,B,k (for channel branches k ∈ JD) coefficients.
They govern the fluid redistribution between the two channel systems A and B: for A we have the
following equation which is coupled with the similar equation for channel B (i.e. the role of indices
A and B is exchanged):

− ∂

∂xα


KAαβ

∂

∂xβ
pA +

∑

k∈JA
SA,kα g̃kA


+ G

(
pA − pB

)
= chAḠA −FA+ĝ+ −FA−ĝ− ,

where FA+/−, chA are constants (the summation w.r.t. repeated indices α, β applies). Fluxes ĝ+/−, ḠD
and g̃kD, k ∈ JD, D = A,B are given, such that the solvability conditions hold. The term G

(
pA − pB

)
,

evaluated at point x ∈ Γ0, expresses the amount of fluid (blood) perfused through the matrix (the dual
porosity) between sectors A and B. The details are reported in Rohan (2010).

3.5. Model of N-coupled layers

We consider N layers; in each the perfusion is described by the homogenized model involving macro-
scopic pressures. Flows between the layers are respected by coupling conditions. In the simplest case, we
assume perfect-matching microscopic cells of two attached layers, so that, at the microscopic level, the
pressures at the “channel junctions” must equal and the fluxes must be opposite. Analogous conditions
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pA, flux −KA · ∇pA pB , flux −KB · ∇pB

Fig. 10: Solutions of the macroscopic problem: macroscopic pressures and fluxes in Γ0.

element 1 element 200

Fig. 11: Perfusion reconstruction at the microscopic level — pressure pM (x′, ·) and perfusion velocities
wM (x′, ·) in matrix, as evaluated at two different macroscopic points (elements).

express coupling for the pressures and fluxes at the interface in the dual porosity. This approach allows us
to approximate the hierarchical structure of the perfusion tree: in each layer the periodic microstructure
can be different.

Numerical illustration The homogenized single layer model is implemented in code SfePy , material
coefficients involved in (3.4.) are evaluated for the microstructure of the 3D periodic cell including two
channels, see Fig. 9, left. The macroscopic problem is solved for given external fluxes: two “macro-
scopic” pressures pA, pB in Γ0 are illustrated in Fig. 10, whereby the local amount of the perfused fluid
is given by G(pA−pB). Once the macroscopic pressures are computed, at any point of Γ0, the fluid pres-
sures and perfusion fluxes can be reconstructed at the microscopic level, see an illustration in Fig. 11.

4. Conclusion

The purpose of the paper was to show various applications of the modelling approach based on homog-
enization of locally periodic structures with strong heterogeneities. The upscaling procedure consists
in asymptotic analysis of partial differential equations (PDE) with oscillating coefficients. The strong
heterogeneities are represented by scale-dependent coefficients, like elasticity in modelling the phononic
materials, or permeability in modelling fluid saturated double porous media. From the mathematical
point of view, sequencies of problems parameterized by the heterogeneity scale ε are considered and their
limit solutions for ε→ 0 are to be computed. In linear problems, as considered here, the limit model de-

Rohan E., Cimrman R., Lukeš V. 19



scribing behaviour of the homogenized medium is represented by macroscopic equations which involve
constant material coefficients; these can be computed independently of the macroscopic response us-
ing characteristic local (microscopic) responses – solutions of autonomous PDEs defined at microscopic
level.

The homogenization approach provides computationally efficient schemes for the multi-scale mod-
eling. Once the macroscopic response is obtained, the “microscopic” responses can be reconstructed
using the characteristic local responses. There is a remarkable difference with respect to the standard
homogenization in using such schemes: while in a standard case the homogenization result is really in-
dependent of the heterogeneity scale, in the “large contrast” case the real material coefficients are defined
for a given scale ε0 > 0. This means that the limit model must be interpreted by an extrapolation for the
scale ε > 0; for this so-called corrector result is used.

There are many important issues closely related to the topic discussed in this paper. An extension of
the homogenization approach for nonlinear problems is cumbersome; apart of the nonlinear techniques
based on the Γ-convergence we proposed a linearization approach based on an incremental formulation
and an updating scheme for locally periodic microstructures. Another issue of interest is presented by
the multi-level (i.e. reiterated) homogenization which allows for modelling heterogeneities at different
scales.
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