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Abstract: Microstructural finite element analysis has become a standard technique for evaluation of me-
chanical properties of trabecular bone. Due to the high complexity of the trabecular bone microstructure,
the FE models have a very large number of elements (about 1 million elements per cubic cm in 50µm3 res-
olution). To perform FE analysis of the microstructural FE models based on micro-CT scanning of whole
bone samples (e.g. vertebral bodies) it is needed to solve 107 – 108 equations. This article deals with com-
parison of approaches using voxel-based microstructural FE models to calculate the overall mechanical
properties of trabecular bone.
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1. Introduction

Inverse estimation of material properties (namely stiffness and strength) of trabecular bone using FE
models of its microstructure is important not only as a nondestructive tool for early prediction of os-
teoporotic fracture, but can be successfully applied in other research areas, e.g. in animal models to
study effect of various growth factors on bone formation.These microstructural FE models are used to
perform a numerical simulation of mechanical experiment. Usually, the micro-FE model is subjected to
unit load in three mutually perpendicular directions and elastic constants are determined from the ’virtual
experiment’.

With the growth of computer power of today’s computers it is now possible to solve large systems of
algebraic equations arising from discretization of differential equations using the finite element method.
This enables to use very detailed FE models of trabecular bone microstructure for inverse determination
of their overall mechanical properties [van Rietbergen et al (1999), Niebur et al (2000)]. In these mi-
crostructural models, tissue material properties are usually assumed to be isotropic and homogeneous and
are determined using either nanoindentation [Rho et al (1997), Zysset et al (1999), Jirousek et al (2011)]
or from micromechanical tests performed on individual trabeculae [Jungmann et al (2011), Doktor et al
(2011), Lorenzetti et al (2011)].

The early models of the trabecular bone microstructure involved only small volume of the bone
[Muller et al (1995)], but solving large number of equations on parallel architectures using either shared
[Natarajan (1991)] or distributed memory [Johan el al (1994), Hodgson and Jimack (1997)] architec-
ture enabled to use this inverse modeling to compute the overall stiffness and strength of whole bones
[MacNeil et al (2008), Eswaran et al (2007)]. One possibility for FE modeling of whole bones is to use
continuum FE models of whole bones [Taddei et al (2004)] with spatially variable material properties,
i.e. material properties are prescribed to each finite element based on the tissue density obtained based
on the tissue density in the material point [Pahr and Zysset (2009)]. In this case, the inner microstructure
is not taken into account and is reflected only by the different density. These FE models are computation-
ally far less demanding, but their ability to reflect the real microstructure as well as changes of the tissue
material properties due to metabolic diseases, e.g. deficiency of the bone mineral is at least questionable.

With the advancement of X-ray imaging systems, particularly with growing resolution and physical
dimensions of modern X-ray flat panel detectors it is now possible to acquire tomographic images of
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whole bones with resolution sufficient to capture its inner structure. These flat panel detectors convert X-
ray photons not absorbed by the inspected object into visible-light photons using a scintillating material.
A layer of photodiodes converts these photons into electrons which activate corresponding pixels in a
layer of amorphous silicone. The activated pixels are used to generate the high-quality, high-resolution
digital image in a computer. Modern X-ray flat panel detectors have several megapixel resolution with
typical pixel size 50-200µm.

One possibility to develop the FE model of trabecular bone architecture is to use smooth-boundary
tetrahedral models. This technique has been popular in early 1990s but requires extra user intervention
to develop these models. Marching Cubes Algorithm [Lorensen and Cline (1987)] is needed to find the
surface of the trabecular bone and because of the complexity of the architecture this procedure usually
involves user-intervention both in the process of tissue segmentation and in the smoothing/optimization
of the surface (triangular) mesh. Moreover, resulting FE models can have even more degrees of freedom
than directly generated voxel models.

Easier approach in terms of model development is to convert the segmented 3-D image data to a
voxel model. In this procedure, every voxel (spatial pixel) in the sequence of microtomographic images
is directly converted to one hexahedral element. It has been shown [Chevalier et al (2007)] that these
models can be used for inverse estimation of elastic properties and strength of trabecular bone. Since
the procedure to develop a voxel model is quite straightforward it can be used to develop a micro-FE
model of whole bones. However, to solve even only a linear static analysis (single solution of a set of
linear algebraic equations) large memory is needed to store the sparse system matrix. For example –
the volume of an average human vertebral (L4) body is 45×103 mm3. With micro-CT images taken at
50µm3 resolution and with average porosity 85%, one gets a FE model with approximately 48 million
elements.

In the present study a parallel solution strategy is described for solving such a large problem in
parallel utilizing existing open-source programs. Our main aim was to demonstrate the scalability of
proconditioned conjugate gradient (PCG) parallel solver for large linear elasticity problems. Two archi-
tectures are used, one distributed shared memory (DSM) system (SGI Altix), second shared memory
system (Intel Xeon X5560) tested using two problems of different size. The larger problem (rat vertebra)
is solved on SGI Altix 4700 series equipped with 56 2-core Intel Itanium-2 processors and SGI’s NU-
MAlink processor interconnect with 288 GB RAM. The smaller problem (sample of human trabecular
bone) is solved using a 16-core system based on Intel Xeon X5560 processors with 48 GB RAM. Voxel
FE model of rat vertebra is developed based on micro-CT images taken in 50µm3 resolution. Total num-
ber of unknowns in these models was approximately 14.106 and 1,7.106, respectively. The models are
used for inverse estimation of the rat vertebrae stiffness in the inferosuperior direction and in case of the
human bone sample for orthotropic properties inverse calculation.

2. Materials and Methods

2.1. Micro-CT scanning of trabecular bone microstructure

To develop high-resolution micro-FE model of trabecular bone at different resolution, two experiments
were performed. In the first experiment, only a cylindrical sample has been extracted from human prox-
imal femur. The sample (diameter 5 mm and height 8 mm) was mounted on a rotating table and placed
in a shielded X-ray box. A complete tomography (360 projections, 1◦ increment) of the sample was
performed to capture its microstructure. For the tomographic measurements an X-ray source (Hama-
matsu L8601-01 with 5 µm focal spot size) and Medipix-2* (256×256 square pixels, 55×55 µm2 each)
detector were used. Acquired tomographic projections were beam hardening (BH) corrected using a
set of aluminum calibrators covering the full attenuation range of the bone specimen using a procedure
described in Vavrik and Jakubek (2009).

The second experiment involved scanning whole vertebra. In this case L4 vertebra of a laboratory
rat has been chosen. To improve the spatial resolution in this case of a specimen with larger physi-

*Medipix collaboration home page: http://medipix.web.cern.ch/MEDIPIX/

544 Engineering Mechanics 2012, #206



Fig. 1: FE model of the trabecular bone microstructure (left) developed based on the micro-CT image
data (100x100x100 voxels) showing the microstructure represented using linear hexahedral elements.
Detail (right) showing individual elements.

cal dimensions, a flat panel X-ray detector C7942CA-22 (Hamamatsu Photonics K.K.) with resolution
2368×2240 px and physical dimensions 120×120 mm was used. Scanning sequence consisted of 360
scans with 0.5◦ step.

2.2. Development of the voxel micro-FE models

The cross-sectional image data were reconstructed from the sinograms using either FBP (filtered back-
projection) or OSEM (ordered subsets expectation maximization) methods. Both FBP and OSEM pro-
vided similar results with OSEM resulting in more homogeneous background. However, both techniques
resulted in a set of images suitable for easy application of segmentation with a global threshold. The
threshold value is set automatically based on the Otsu’s method with chooses the threshold to minimize
the intraclass variance of the black and white pixels [Otsu (1979)].

For the micro-FE model of the vertebra, only a subregion was selected – the cortical shell and internal
trabecular structure of the vertebral body was considered. The endplates and the posterior processes
has been mathematically removed. These parts were excluded from the inverse computation of the
overall stiffness due to simplify the load application and specification of the boundary conditions. Direct
conversion from micro-CT volumetric data to voxel micro-FE models requires only setting appropriate
threshold to distinguish between the bone and empty space. The threshold value was chosen iteratively
using one selected reconstructed cross-section of the vertebra.

2.3. Inverse calculation of the stiffness and strength

To compute the overall stiffness of the vertebral body in the infero-superior direction a unit displacement
has been prescribed on the top surface of the vertebral body. The lower surface of the body was fixed
(all nodes with minimal z-coordinate were prescribed zero displacements in three directions). Based
on our previous nanoindentation results [Jirousek et al (2011)] the tissue-level material properties were
prescribed: Young’s modulus of elasticity ETISSUE=15 GPa, Poisson’s ratio: µTISSUE=0.2.

From the volume data, 100×100×100 voxels were selected in the middle part for easy comparison of
orthotropic elastic properties. The coordinate axes were aligned such as to keep Z-axis in the direction of
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Fig. 2: Cross-sectional image data of the whole rat vertebra and the FE model created from the vertebral
body part showing the microstructure represented using hexahedral elements

loading during the experiment. Total number of nodes was 566,790 for the 100×100×100 voxel model
and 4,791,142 for the FE model of rat vertebra. Prior the computations, the FE models were verified for
mesh connectivity.

2.4. Parallel computation using PCG solver

The critical part of the FE computation of such a large model is the solver. For the current micro-FE
analyses of voxel models of trabecular bone is one level element-by-element preconditioned conjugate
gradient (EBE-PCG) Hughes et al (1987) considered as the most frequently used solver. The solver takes
advantage of the identical size of every element in the voxel model (every element has exactly the same
stiffness matrix) and it is very memory efficient (it does not compute the global stiffness matrix) since
it requires only a matrix-vector product. However, due to its slow convergence and poor scalability, this
solver is efficient only for problems of moderate size (under 1 million elements) and can be successfully
used for the solution of small-volume samples of trabecular bone. For large models of whole bones or for
nonlinear material models (plasticity) this solver is inefficient. An example of this inefficiency is given
in van Rietbergen et al (2003) where linear elastic analysis of a micro-FE model of the proximal femur
with 96 million elements using the EBE-PCG solver with a convergence tolerance of 10−3 took 25,000
CPU hours (almost 7 weeks of wall-clock time) on 30 processors of an SGI-Origin2000 computer with
250MHz-R10000 processors using 17 GB of memory.

For our computations, PCG solver with 1.10−8 tolerance was chosen for all considered FE models
[Bangerth et al (2007), Bangerth et al (2011)]. Prior the computations with the largest system (rat verte-
bra, ∼15.106 unknowns) the convergence and speedup was tested using smaller FE models. These mod-
els were obtained by cutting the trabecular bone microstructure to smaller connected volumes with vari-
able number of degrees of freedom (DOF). The cutting resulted in three FE models: i) small (∼10,000
DOFs), ii) middle (∼400,000 DOFs) and iii) large(∼3,000,000 DOFs).

On the SGI Altix 4700 the PCG solver scaled nicely up to 32 CPUs (more CPUs were not tested due
to the workload of the computer by other users). Of course, the smallest FE model was not tested for
more than 2 CPUs, since the solver took less then 3 seconds to converge on 1 CPU on the SGI Altix and
less than 2 seconds on 1 core of Intel Xeon X5560. However, when number of unknows was larger than
100,000 the problems scaled very nicely on the SGI Altix system. As one can see from Tab. 1 the Intel
Xeon X5660 system scaled nicely only up to 8 processor cores. Time needed to finish the large model
using all 16 CPU cores was even larger when only 8 CPU cores were used. This might be caused by
the fact, that the system was not fully-dedicated for the only task and there was no scheduling system
available.
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Tab. 1: Solver time and speedup for the middle-size model (400,000 DOFs) using PCG solver on SGI
Altix 4700 architecture (Intel IA-64 Madison)

number of CPUs solver time [s] number of iterations speedup [-]

1 663 205 1

2 404 250 1.6

4 250 265 2.7

8 106 275 6.3

16 59 286 11.2

32 30 303 22.1

Tab. 2: Solver time and speedup for large model (3,000,000 DOFs) using PCG solver on 16-core shared-
memory Intel Xeon X5560 system

number of CPUs solver time [s] number of iterations speedup [-]

1 1194 479 1

2 653 496 1.8

4 366 514 3.3

8 208 525 5.7

16 211 545 5.7

For the large problem, the SGI Altix was tested only from 8 CPUs up, since the NUMAlink archi-
tecture does not allow to allocate more than 2 GB RAM per processor and the memory needed for this
problem was larger then the limit for smaller number of CPUs when used in parallel.

Fig. 3: Speedup of the PCG solver for differently-sized problems on the two architectures
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3. Conclusions

In the paper, solution strategy for large-scale FE models originating from micro-CT data of trabecular
microstructure of whole bones was presented. These micro-FE models are intended for validation of
computationally less-demanding numerical models, but can be successfully used for numerical studies
of implant-bone interaction, for studies of different approaches to vertebroplasty or in animal models for
verification and comparison of drug treatments.

Results from the FE simulations were written in large ASCII files in both VTK (visualization toolkit,
[Schroeder et al (2003)]) and GMV (general mesh viewer, [Ortega (2005)]) formats. The advantage
of using VTK format lies in the easy postprocessing with Paraview [Henderson (2007)] which takes
advantage of the multicore system (ParaView can be configured for visualization clusters using MPI
parallel server on the same machine that is running the GUI).

From the inverse calculation of the orthotropic properties of micro-FE model of trabecular bone
sample EX=1.06 GPa, EY =1.97 GPa and EZ=1.86 GPa were determined with agreement to previously
published results, see Jirousek and Zlamal (2011).

Since the memory requirements for the PCG solver are slightly over 1 GB per million DOFs, one
can easily compute the maximal number of unknowns solvable on a shared memory system. In our
computations, a specialized program for partitioning graphs and FE meshes which produces fill reducing
orderings for sparse matrices, METIS [Karypis and Kumar (1999)] was used. One limitation exists
for the SGI Altix systems - the memory available for one processor is limited (in our configuration, each
processor is eqquipped with 2 GB RAM) and therefore the user must decide how to partition the problem
not to exceed the memory available for the single processor. On the other hand, the extensibility of the
Altix 4700 is remarkable – the system can contain up to 2048 dual-core Itanium 2 processors (connected
by the NUMAlink 4 interconnect) equipped by up to 128 TB of memory.

As a conclusion, it can be stated, that for very-large problems with more than 10 million unknowns
the EBE-PCG solver (despite its low memory requirements) is inconvenient due to its slow convergence.
In this case, more powerful and more scalable strategy should be employed, such as the Algebraic Multi-
grid (AMG) solvers, such in Eswaran et al (2007).
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