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Abstract: We consider materials with different levels of porosity at different scales. Homogenization theory
provides a natural way of upscaling fluid-structure interaction problem posed at the smallest scale to higher
levels of porosities in a sense that effective material coefficients (stiffness, permeability, Biot coefficients
etc.) at a higher level are obtained by applying homogenization to the lower level. This approach leads
to a convenient hierarchical description of the porous medium, suitable for multiscale modelling - in the
contribution we present numerical examples motivated by bone tissue poromechanics.
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1. Introduction

Porous fluid saturated materials with different levels of porosities are abundant in nature and can be en-
gineered as well to conform with requirements in technical practice. This paper describes one approach
to modeling of the mechanical behavior of fluid-saturated cortical bone tissue. The multiscale model
presented here is based on the theory of homogenization and provides an efficient computational tool
which can be used firstly to study influence of the bone structure on the mechanical properties, namely
on the stiffness and on the overall strength, secondly to study the mechano-transduction: how the macro-
scopic loading determines local deformation and microflows in the hierarchical porous structure. The
latter phenomenon is tightly related to evolutionary processes which on a longer time scale lead to tissue
remodeling and growth.

In the present study we focus on one sub-topic of the homogenization-based bone modelling. Namely,
we provide homogenization-based formulae which enable to compute the poroelasticity coefficients for
a given geometry and topology of micro- and mesoscopic levels. We describe an arrangement of porosi-
ties, each one forming a separate connected system, which are connected by a quasipermeable, or an
impermeable interface; then the homogenized problem results in two different pressures. At the meso-
scopic scale we take into account the Darcy flow in the poroelastic matrix, although in the mesoscopic
channels the fluid is assumed to be static with no pressure gradients.

Only the main results relevant for computer implementation are reported here, as the derivation of
the homogenization formulae is beyond the scope of this paper. In Section 2. we discuss modelling
assumptions and introduce all formulae and equations constituting the two-level homogenized model.
The hierarchical homogenization is implemented in our in-house finite element code; in Section 3. we
illustrate the hierarchical upscaling procedure using a numerical example.

2. Hierarchical model of double porosity

We consider a poroelastic medium saturated by fluid. The porosity of the medium is formed at two
levels, distinguishable by different sizes of pores, see Fig. 1. These are connected by a weakly permeable
interface, so that the model also describes a situation of disconnected porosities, see Rohan and Cimrman
(2012).
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Fig. 1: The two-level heterogeneous structure: α-level is formed by a single connected porosity Y α
c ; the

matrix Y α
m is formed by the solid. At the β-level, the homogenized structure of the α-level forms the

material situated in the matrix Y β
m. Representative periodic cells are depicted.

The two levels, further labeled by superscripts α and β are associated with the “microscale” and the
“mesoscale”, respectively. In bone modelling, the two levels correspond to the canaliculo-lacunar and
the Haversian porosities.

At the microscale level, we consider an elastic solid phase forming a porous skeleton filled with fluid.
We assume only moderate pressure gradients at the mesoscopic scale, such that the fluid is static. The
pores can form a connected porosity, or mutually separated inclusions: in the first case only one scalar
pressure value represents the pressure field in the porosity. By homogenizing this two-phase medium
we obtain a Biot-type model describing at the mesoscale the upscaled poroelastic microstructure α,
cf. Auriault and Sanchez-Palencia (1977).

At the mesoscale the above mentioned α-poroelasticity model describes the material occupying the
matrix of the meso-structure β; at this “higher” level the canals can exchange the fluid with the micro-
scopic pores of the α level due to a weakly permeable interface. For upscaling from the meso- to the
macroscopic scale, we take into account a slow flow in the “dual porosity” associated with the micro-
scopic scale.

In this paper we only report the main results relevant for a computer implementation. Homogeniza-
tion at each scale level proceeds in two steps:

1. Find effective (homogenized) coefficients by solving auxiliary problems for several characteristic
(or corrector) functions, cf. Rohan et al. (2012b); Rohan and Cimrman (2011);

2. Compute the homogenized coefficients that can be used for the higher level and/or “global” (ho-
mogenized) model of the current level. Due to linearity of the problems, those steps are decoupled
in a sense that the computation of the homogenized coefficients for the global level is valid for any
point having the corresponding “microstructure”.

Let us consider the scale parameter ε, describing the ratio of the characteristic sizes,Lα andLβ , of the
two levels, i.e. ε = Lα/Lβ . By superscript ε we indicate dependence of functions and other parameters
on ε. We use the same symbol also for upscaling from meso- to macro-scale: ε = Lβ/Lmacro.

Let us denote Ω` the domain at level ` = α, β. We assume that the domain Ω` is obtained from a
periodic microstructure generated by a representative unit cell Y ` decomposed as follows

Y ` = Y `
m ∪ Y `

c ∪ Γ`Y , Y `
c = Y ` \ Y `

m , Γ`Y = Y `
m ∩ Y `

c , ` = α, β , (1)

where Y `
m is the matrix, Y `

c are the channels and Γ`Y is the matrix–channels interface. Without loss of
generality we can define Y = (]0, 1[)3 to be the unit cube, so |Y | = 1. As a result of (1), the domain Ω`

is defined by
⋃
k∈Kε ε(Y

` + k) with Kε = {k ∈ Z3, ε(Y ` + k) ⊂ Ω`}.
The homogenization procedure starts with a model at the microscale, see Rohan and Cimrman

(2012), written in terms of the displacement vector uα,ε of the matrix and the fluid pressure pα,ε in
pores, and the following material parameters, which form the input of the model:
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• Dε: the elasticity fourth-order tensor of the matrix,

• γ: the fluid compressibility,

• ν: the fluid viscosity.

For each microstructure we also compute the porosities (volume fractions of pores) φ` = |Y `
c |/|Y `|,

` = α, β.

The upscaling procedure of the heterogeneous continuum consists in the limit analysis of the ε de-
pendent model with respect to ε → 0. For this we use the periodic unfolding method Cioranescu et al.
(2008); Griso and Rohan (2007).

2.1. Homogenization results for level α

The two steps of the solution algorithm involve:

Corrector problems First, let us introduce some notation:

aαm (w, v) = −
∫

Y αm

(Dey(w)) : ey(v) ,

Πij = (Πij
k ) , i, j, k = 1, 2, 3 with Πij

k = yjδik ,

(2)

where denotes ey(w) is the small strain tensor (derivatives w.r.t. Y domain coordinates y). By H1
#(Ym)

we mean H1 space of vector functions periodic in Ym. The problem for the characteristic responses then
reads: Find (ωij ,ωP ) ∈ H1

#(Ym)×H1
#(Ym) satisfying

aαm
(
ωij + Πij , v

)
= 0 , ∀v ∈ H1

#(Ym) ,

aαm
(
ωP , v

)
=∼
∫

ΓY

v · n[m] dSy , ∀v ∈ H1
#(Ym) .

(3)

Homogenized coefficients Using the characteristic responses (3) obtained at the microscopic scale the
effective properties of the deformable porous medium are given by

Aαijkl = aαm

(
ωij + Πij , ωkl + Πkl

)
, Bα

ij = − ∼
∫

Ym

divyωij , Mα = aαm
(
ωP , ωP

)
, (4)

where Aα is the skeleton stiffness corresponding to the dried medium, Bα are the Biot-type stress co-
efficients associated with pressure in channels Y α

c and Mα is effective Biot compressibility modulus.
Obviously, the tensors Aα = (Aαijkl) and Bα = (Bα

ij) are symmetric; moreover Aα is positive definite
and Mα > 0.

2.2. Homogenization results for level β

The two steps of the solution algorithm involve:

Corrector problems To define the local problems for corrector functions, we need the following bi-
linear forms which involve the homogenized coefficients computed in (4):

aβm (w, v) =∼
∫

Y βm

Aαey(w) : ey(v) ,

bβm (p, v) =∼
∫

Y βm

pB̂α : ey(v) , B̂α := Bα + φαI.

(5)

It is worth noting that upscaling from the meso- to the macro-level does not lead to any fading memory
terms involving time convolutions, in contrast with upscaling of the double porosity media, cf. Rohan
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et al. (2012b); Rohan and Cimrman (2010). As a counterpart to the α level, see (3), the characteris-
tic responses, i.e., displacement modes at the mesoscopic level, satisfy the following problems: find
wij , ŵ, w̄ ∈ H1

#(Y β
m) such that

aβm
(
wij + Πij , v

)
= 0 ∀v ∈ H1

#(Y β
m) ,

aβm (ŵ, v) = bβm (1, v) ∀v ∈ H1
#(Y β

m) ,

aβm (w̄, v) = −(1− φα) ∼
∫

ΓβY

v · n[m] ∀v ∈ H1
#(Y β

m) .

(6)

The pressure fluctuation associated with the α-level porosity is driven by the characteristic pressure
response: find η1 ∈ H1

#(Y β
m)/R such that

∼
∫

Y βm

K∇y(ηi + yi) · ∇yψ = 0 ∀v ∈ H1
#(Y β

m) . (7)

The permeability K can be computed using the standard homogenization of the Stokes flow considered
in a connected α-porosity generated by Y α

c , see e.g. Hornung (1997); Sanchez-Palencia (1980).

Homogenized coefficients The homogenized coefficients describing the material behaviour at the β
level are computed as follows:

Aβ = (Aβijkl), Aβijkl = aβm

(
wij + Πij , wkl + Πkl

)
,

Bβ = (Bβ
ij), Bβ

ij = bβm
(
1, wij + Πij

)
,

B̄β = (B̄β
ij), B̄β

ij = (1− φα)φβδij + aβm
(
wij , w̄

)
,

Kβ = (Kβ
ij), Kβ

ij =∼
∫

Y βm

K∇y(ηi + yi) · ∇y(ηj + yj) ,

(8)

where Aβ is the skeleton stiffness corresponding to the dried medium, Bβ and B̄β are the Biot-type stress
coefficients associated with two pressures, pα pressure field in the matrix (in the α-level pores) and p̄β

a single scalar pressure in the β-level channels, respectively, and Kβ is the effective permeability. There
are three effective Biot compressibility modulae

Mβ = aβm (ŵ, ŵ) , M̄β = aβm (w̄, w̄) , Nβ = aβm (ŵ, w̄) , (9)

which constitute the following compressibility matrix:

IMβ =

[
Mβ +Mα + γφα Nβ

Nβ M̄β + γφβ

]
. (10)

Macroscopic equations The macroscopic behaviour of the double porosity fluid saturated medium is
described by the triplet (u, pα, p̄β) ∈ H1(Ωβ)× L2(Ωβ)× R which satisfies the macroscopic equations
(we use the abbreviation Ω = Ωβ)

∫

Ω
Aβe(u) : e(v)−

∫

Ω
e(v) :

[
Bβ, B̄β

]
[pα, p̄β]T =

∫

∂Ω
(1− φβ)ĝα · v dSx

+

∫

Ω
(1− φβ)f̂

α · v ,
∫

Ω
[qα, q̄β]

[
Bβ, B̄β

]T
: e(u̇)

+

∫

Ω
Kβ∇pα · ∇qα +

∫

Ω
κβ(pα − p̄β)(qα − q̄β)

+

∫

Ω
[qα, q̄β] · IMβ[ṗα, ˙̄pβ]T = −Jβextq̄

β +

∫

∂Ω
(1− φβ)qαw̄n dSx ,

(11)
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for all triplets (v, qα, q̄β) ∈ H1(Ωβ)×L2(Ωβ)×R, where κβ =∼
∫

ΓβY κ̄ is the average interface permeability,

f̂
α

, ĝα are given forces, w̄n is a draining flux outwards the α porosity and Jβext is a given overall drainage
of the β-level connected pores. Obviously, the data must satisfy some solvability conditions.

If Kβ or κβ are nonvanishing, initial conditions must be supplied; one may consider the unloaded
and undeformed state, or a steady state characterized by a single pressure value, i.e. pα(x, ·) = p̄β(·),
x ∈ Ωβ .

3. Numerical example

The homogenization results presented in previous sections were discretized by the finite element method
and implemented in a standalone computer code based on our code SfePy, see Cimrman and contributors
(2012). In this section we show some results obtained by this code.

For numerical illustration of effects of geometry of connected porosities on the level α we used the
reference periodic cells of the micro structures shown in Fig. 2. Three cases were considered:

• #1: α-level porosity in Fig. 2 (a), β-level porosity in Fig. 2 (d),

• #2: α-level porosity in Fig. 2 (b), β-level porosity in Fig. 2 (d),

• #3: α-level porosity in Fig. 2 (c), β-level porosity in Fig. 2 (d),

that is, the diameters ofα-level channels increased with the case number. The following material/geometrical

(a) (b) (c) (d)

Fig. 2: (a)-(c): reference cells for level α, case #1, #2 and #3. (d) reference cell with connected porosity
for level β for all cases.

parameters were used:

coefficient units where level values
stiffness D GPa Ym α λ = 17, µ = 1.7

kinematic fluid viscosity ν m2/s Yc α ν = 10−6

fluid compressibility γ GPa−1 Ωβ macro β γ = 1.0
interface permeability κβ m / (GPa s) Ωβ macro β κβ = 10−6

porosity φ 1 case #1 α φ = 0.119
1 case #2 α φ = 0.236
1 case #3 α φ = 0.376
1 all cases β φ = 0.185

where the Lamé parameters defined the stiffness tensor as follows:

D : Dijkl ≡ µ(δikδjl + δilδjk) + λδijδkl .

Because a practical computation has to be related to a real scale of an existing microstructure, and be-
cause of scaling assumptions for fluid viscosity and interface permeability, we assumed the real value of
ε = 10−3 and scaled the values given above accordingly, when solving for the homogenized coefficients
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coef. Kα Kβ

#1



4.44 · 10−5 0 0
0 4.44 · 10−5 0
0 0 1.40 · 10−4







3.62 · 10−5 0 0
0 3.62 · 10−5 0
0 0 1.14 · 10−4




#2



2.95 · 10−4 0 0
0 2.95 · 10−4 0
0 0 5.91 · 10−4







2.40 · 10−4 0 0
0 2.40 · 10−4 0
0 0 4.82 · 10−4




#3



1.06 · 10−3 0 0
0 1.06 · 10−3 0
0 0 1.74 · 10−3







8.63 · 10−4 0 0
0 8.63 · 10−4 0
0 0 1.42 · 10−3




Tab. 1: Homogenized permeability coefficients on levels α, β for cases #1, #2 and #3.

(ν → ν/ε2, κβ → κβ/ε). The computations resulted in the homogenized coefficients. Here we report
only the permeabilities that are summarized in Tab. 1 for the three cases.

The macroscopic equations of level β (11) were solved on a cube domain with the following initial
and boundary conditions:

• u(0, ·) = 0, pα(0, ·) = 0, p̄β(0, ·) = 0,

• u(t, x) = 0 for x in bottom face,

• pressure traction load on the top face, with magnitude equal to time step ×10−2 [GPa] up to step
10, then held on the value 10× 10−2, for 20 time steps, t ∈ [0, 0.1].

In Fig. 3 we compare time histories of macroscopic solutions for the three cases and in Fig. 4 several
snapshots of macroscopic solutions are shown. It can be seen that the connected porosity behaves in
a viscoelastic manner because of the fluid flow in the interconnected pores. The influence of the pore
geometry (radius) is clearly demonstrated.
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Fig. 3: Comparison of time histories of macroscopic solutions for the three cases: (a) difference between
pα in a point on the top face xt and bottom face xb; (b) p̄β , (c) z-displacement in xt.

4. Conclusion

We have developed a two-level homogenized model of poroelastic media with weakly permeable in-
terface between the two porosities. The two upscaling levels allow representing three scales which,
however, should be separated in the sense of different enough characteristic lengths. As an advantage,
the poroelastic coefficients can be computed for a given geometrical arrangement of micro- and meso-
structures.

Since the model is intended to describe hierarchical structure of pores in the canaliculo–lacunar
porosity of bone, we consider two “microscopic” levels with connected pores (Rohan et al., 2012a).

The homogenization procedure reported in this paper makes possible to treat an arbitrary geometry
and topology of the pores, whereby the localization tensors and coefficients can be calculated as the
response of the autonomous microscopic problems; this was demonstrated using a numerical example
computed by our code (Cimrman and contributors (2012)). The assumption of the weakly permeable
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#1

step 2 step 10 step 20

#2

step 2 step 10 step 20

#3

step 2 step 10 step 20

Fig. 4: Snapshots of macroscopic solutions (10× magnified u, color = pα) in time steps 2, 10 and 20 for
the case #1 (top), #2 (middle) and #3 (bottom).

interface disables full connection of the two porosities; this situation is treated in a separate paper Rohan
et al. (2012a), cf. Rohan et al. (2012b) for related issues of the double porous materials.
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