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Abstract: The present paper describes the application of the particle swarm optimization (PSO) to the
shape optimization of two-dimensional domains described by NURBS (non-uniform rational B-splines)
and analyzed by the NURBS-based Isogeometric analysis. The regularization of the optimization problem,
preventing undesirable clustering of control points of the underlying geometry leading to invalid geometry
or parametrization, is achieved by controlling the magnitude of perturbation of design variables within PSO
using a background mesh. This mesh, however, does not have to comply with requirements on a standard
(e.g. FEM) computational mesh, as it does not have to follow the exact geometry. Thus construction of
such mesh (Matlab Distmesh tool is utilized) is simple and does not introduce a bottleneck to the whole
process. The capabilities and performance of the developed optimization strategy will be demonstrated on
a standard benchmark problem.
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1. Introduction

Isogeometric analysis (IGA) (see papers Hughes (2005); Bazilevs (2006); Cottrell (2006, 2007, 2009);
Zhang (2007)) is a recently introduced method which builds upon the concept of isoparametric elements
and upgrades it to the geometry level. Although the original intention was to span the gap between the
computer aided design (CAD) and the finite element method (FEM), the various advantages and range
of applicability make the IGA an interesting alternative to the widely used FEM. It has been shown
that the IGA outperforms the classical FEM in various aspects (accuracy, robustness, system condition
number, etc.). Another distinct advantage of the IGA over the FEM consists in the conciseness of the
parametrization of the design variable space, which makes the IGA attractive for the shape optimization
problems.

The aim of this paper is to present the application of the particle swarm optimization (PSO) to the
shape optimization of two-dimensional domains described by NURBS and analyzed by the NURBS-
based IGA. The regularization of the optimization problem, preventing undesirable clustering of control
points of the underlying geometry leading to invalid geometry or parametrization, is achieved by con-
trolling the magnitude of perturbation of design variables within PSO using a background mesh.

The paper is organized as follows. The concept of the IGA is briefly recalled in Section 2. A method
of the Particle Swarm Optimization is introduced in Section 3 and the Distmesh tool for mesh gen-
erating is shortly mentioned in Section 4. The final combination of all these methods is described in
Section 5 and results are presented in Section 6.
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2. Isogeometric Analysis

In the IGA, the approximation of the solution over the domain is based on the functions employed
for the description of the underlying geometry of the domain itself. Therefore understanding of the
NURBS based representation of the geometry (used in CAD) gives a good insight into the isogeometric
concept. A NURBS patch is defined by a set of control points (topologically forming a regular grid of
the dimension corresponding to the spatial dimension of the underlying parametric space), their weights,
degree of the B-spline basis functions in each direction of the parametric space, and a so-called knot
vector represented by a nondecreasing sequence of parametric coordinates for each direction defining
the support for individual B-spline basis functions (in other words parametrization) in that particular
direction. Note that the number of control points, degree of basis functions, and size of the knot vector in
the particular parametric direction are not independent and must be mutually consistent. The data at the
control points (for example the coordinates when the geometry is concerned, or the primary unknowns
when the solution space is handled) are interpolated over the NURBS patch using the shape functions
which are defined as weighted normalized tensor product of univariate B-spline basis functions in each of
the parametric directions. For example, for a two-dimensional NURBS patch of a degree p in u-direction
and degree q in v-direction, the basis function associated with a control point in the i-th row and j-th
column of the grid of N ×M control points is given by

Rp,qi,j (u, v) =
Np
i (u)N

q
j (v)wi,j∑N

n=1

∑M
m=1N

p
n(u)N

q
m(v)wn,m

, (1)

where wi,j stands for the control point weight and N r
k (t) denotes the univariate B-spline basis functions

of the degree r. Starting with the piecewise constant basis functions of a zero degree defined by

N0
i (t) =

{
1 if ti ≤ t < ti+1,
0 otherwise,

(2)

the basis functions for degree p > 0 are defined recursively as

Np
i (t) =

t− ti
ti+p − ti

Np−1
i (t) +

ti+p+1 − t
ti+p+1 − ti+1

Np−1
i+1 (t), (3)

in which ti (for i = 1, 2, . . . , N+p+1) stands for entries of the knot vector andN denotes the number of
control points (in the given direction). This is demonstrated in Figure 1a) where the cubic basis function
N3
i spanning four consecutive knot spans is obtained as linear combination of consecutive quadratic basis

functions N2
i and N2

i+1 spanning the first three and last three from those four knot spans, respectively.
Figure 1b) then displays the hierarchical sequence for piecewise constant, linear, and quadratic basis
functions built over an infinite uniform knot vector. For details concerning the definition of the B-spline
basis functions and their properties the reader is referred to Piegl (1997).

An example of a quadratic NURBS curve (i.e. one-dimensional NURBS patch) defined by six control
points and their weights and parameterized over the open knot vector‡ {0, 0, 0, 1, 3, 3, 4, 4, 4} is depicted
in Figure 2a). The parametric equation of that particular curve is given by

r(t) =
6∑

i=1

Ri(t)P i, (4)

where r is the positional vector of a point on the curve corresponding to parameters t ∈
〈
0, 4
〉

and P i

represents the individual control points. The colors of individual parts of the curve correspond to the
individual non-zero knot spans (red: 0−1, green: 1−3, blue: 3−4). The NURBS basis functionsR2

i (t)
as well as the B-spline basis functions N2

i (t) used to construct R2
i (t) are shown in Figure 2b) over the

entire span of the knot vector. The curve interpolates those control points for which the corresponding
basis function attains value one (knot value at which this occurs defines the parameter corresponding

‡Knot vector is called open if its first and last entry is repeated (degree + 1) times, which implies that the curve is passing
through the first and last control point (see Piegl (1997) for details).
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Fig. 1: B-spline basis functions: (a) construction of cubic basis function as linear combination of
quadratic basis functions, (b) hierarchical sequence of piecewise constant, linear, and quadratic basis
functions
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Fig. 2: Quadratic NURBS curve: (a) control polygon in black; numbers of individual control points and
their weights (in parenthesis) in color corresponding to associated basis function; segments of the curve
in red/green/blue corresponding to non-zero knot spans 0-1/1-3/3-4, (b) B-spline basis functions Ni and
NURBS basis functions Ri corresponding to individual control points plotted over the entire span of the
knot vector {0, 0, 0, 1, 3, 3, 4, 4, 4}

to that control point), the rest of the control polygon is only approximated. The curve is C1 continuous
everywhere except for the point corresponding to parameter 3 at which the continuity has been weakened
by repeating that particular value in the knot vector twice.§ Note the C0 continuity of the B-spline basis
function N4 in Figure 2b) at parameter 3. The coincidence of the interface between the first (red) and
the second (green) knot span on the curve with the intersection of the curve with its control polygon is
a rule for quadratic curve only. Note that the red part of the curve (corresponding to the first knot span of
size 1) is significantly larger than the green part (corresponding to the second knot span of size 2) despite
the fact that the control polygon between control points 1 and 4 is symmetric with respect to the middle
of its second segment. This is the consequence of the weight 4 applied at the third control point which
results in the attraction of the curve toward the third control point.

The computational isogeometric mesh within the single NURBS patch is formed by partitioning the
parametric space into the non-zero knot spans in each direction (in the example above, there are three
such non-zero knot spans, see Figure 2). Since the shape functions within the single non-zero knot span

§Generally, multiplicity k ≤ p of a particular inner knot decreases the continuity of the basis functions of degree p at that knot
to Cp−k.
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are C∞, the computation of characteristic components of the discretized governing differential equation
(e.g. stiffness matrix, load vector, etc.) on each non-zero knot span is performed in the standard FE-like
fashion, typically using the Gaussian numerical quadrature¶.

The IGA has many features in common with the FEM (the shape functions form a partition of unity,
they have the compact support, affine invariance applies, a numerical integration is employed, Neumann
boundary conditions are satisfied naturally etc.) but there are some more or less significant differences.
In the traditional FEM, the individual nodes are part of the computational domain, and corresponding
degrees of freedom (DOFs) have the direct physical meaning (e.g. displacement in particular direction
at the node), which is the direct consequence of the Kronecker delta property of the finite element shape
functions. In the framework of the IGA, the control points of NURBS patches are generally not part of
the physical computational domain. This implies that the application of Dirichlet boundary conditions is
not straightforward and must be handled (often only approximately) within the available NURBS space.
Except for the h-, p-, and hp-refinement strategies, the isogeometric concept offers also a higher order
refinement methodology, known as k-refinement (see papers Hughes (2005); Cottrell (2007)), which
has no analogue in the standard FEM and which is based on the fact that knot insertion (refinement
of the parametric space) and degree elevation algorithms do not commute. Using the k-refinement,
it is possible to increase the continuity across knot span boundaries (within a single NURBS patch)
while limiting the growth of control variables. An important feature of the IGA analysis is the fact
that due to a larger support of basis functions of quadratic degree and higher‖ the number of control
points necessary to obtain results of similar quality as that from the FEM using a basis function of the
same degree, is smaller. The same also holds for the representation of the underlying geometry. This
conciseness of parametrization makes the IGA attractive for the shape optimization problems as the
size of the design variable space is kept limited while still preserving sufficient level of flexibility and
geometrical continuity. Moreover, the approximation property of the B-spline basis functions (the actual
geometry does generally not interpolate individual control points) eliminates the undesirable oscillations
(know in the FEM) due to the interpolation nature of (typically Lagrangian) finite element basis functions
and reduces the need for the regularization.

3. Particle Swarm Optimization

A lot of new metaheuristic optimization methods is inspired by nature. Algorithms simulate social be-
havior of animals, birds or insects or behave according to some physical phenomena. One of the main
advantages of metaheuristics is that there is no need to determine a gradient of an objective function as
in case of mathematical programming methods. Particle Swarm Optimization (PSO), as a member of
Swarm Intelligence techniques, is a relatively new method firstly introduced in (Kennedy (1995)). It is
based on a natural behavior of bird flocking or fish schooling. The flock acts like one organism. The
whole flock as well as every individual, called particle, has its own memory. Particles share their best
knowledge to each other thus the flock can find the optimal solution efficiently.

Each particle represents a potential solution in D-dimensional space. The i-th particle Xi is rep-
resented as Xi = (xi1, xi2, xi3, . . . , xiD). Particles fly through the searched space with a velocity
Vi = (vi1, vi2, vi3, . . . , viD). Every component of the velocity is updated according to the following
equation

vj+1
id = w · vjid + c1 · rand() · (pid − xjid) + c2 ·Rand() · (pgd − xjid), d = i, . . . ,D (5)

where w is the inertia weight, vjid is a velocity from the previous step, c1 is the cognitive factor, c2 is the
social factor, pid represents the best position of the particle i, pgd represents the best swarm position and
rand() and Rand() are two random scalars, vectors or matrices, respectively, in the range of [0,1] (Shi
and Eberhart (1998)). The first addend of the Equation 5 is deterministic and represents an inertia of the
particle. If there is a zero contribution from the second as well as the third addend, the particle will move
only with inertia from the previous step and it does not stay in a local minimum. The second addend of

¶Note, however, that Gaussian numerical quadrature is generally not optimal and that there exist more efficient numerical
integration schemes for the IGA.
‖Note, that for linear degree, the IGA analysis is identical with the FEM based on linear elements.
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Fig. 3: Velocity update of one particle in 2D where c1 = c2 = 2

Equation 5 is stochastic because of the random function rand(). It provides movement of the particle
towards its own best position. The third contribution is stochastic as well and provides shifting of the
particle to the best swarm position. Fig. 3 illustrates stochastic contributions of Equation 5. Since each
addend is scaled by a random number in the range of [0,1], the end of the velocity vector can be placed
anywhere in the yellow hatched area.

The position of the particle xjid is then updated by

xj+1
id = xjid + 1 · vj+1

id (6)

where vj+1
id is an actual velocity from Equation 5 and 1 has the meaning of the unit time.

There are two possibilities how to scale stochastic addends (Wilke et al (2007)). The first approach,
a linear PSO, is using two random scalars as rand() and Rand() which multiply the magnitude of the
cognitive and social vectors. The main disadvantage of this method is that particle will fly over the
straight line at the end of the algorithm and whole space will not be searched. The second approach,
a classical PSO, produces a two random vectors or two random diagonal matrices, respectively. The
movement of particles is then diverse during the whole run. The classical approach is used hereafter.

The algorithm of the PSO can be described as follows.

1. The first step is to set up all coefficients and variables. We use values as listed in Table 1, see the
next section for the discussion on the settings. Note that initial velocities can be zero or random.
Non-zero velocities have a merit of diversity in the deterministic addend, and therefore, have been
used in our implementation.

2. In the next step, the value of an objective function is calculated for all particles. The value is then
compared with the best solution of the particle and with the best solution of the whole swarm.
In case of better value in the actual iteration than in previous ones, the positions Pgd and Pid are
updated.

3. Velocities are calculated for all particles according to Equation 5 and positions are updated by
Equation 6.

4. The algorithm ends after reaching a maximum number of iterations selected at the first step.

The main drawback is that the PSO can move particles out of the admissible space. The easiest
solution is to restrict a velocity or coordinates for a particle which flies outside. The three most frequent
PSO approaches of controlling velocities (Čapek, 2008) are depicted in Fig. 4. An absorbing wall ensures
the movement of the particle along the boundary, a reflecting wall bounces the particle back to the
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Fig. 5: Returning process for a particle which flies out of the solution space

admissible space and an invisible wall does not utilize updating of a particle position if the movement
directs behind the boundary. In our implementation, another approach is used. The coordinates are
limited to the given bounds, i.e. if the particle flies out of the admissible space, it is returned back to the
boundary according to Fig. 5.

4. Mesh generation using Distmesh tool

The Distmesh tool (DM) is a heuristic smoothing algorithm for generating uniform meshes (Chen
and Holst, 2011). The DM is based on a simple dynamical system of expanding pin-jointed structure,
here characterized by the second (background) mesh, see Fig. 6a). Those trusses that are too short are
causing repulsive forces that move the too close nodes apart, see Fig. 6b) for the final solution. The main
disadvantage apart from high computational demands is the need to return nodes that leave the prescribed
admissible domain, i.e. the same problem encountered within the PSO. The DM offers similar procedure
as is shown in Fig. 5 for basic entities. A polygon used in our computations to describe the background

(a) Triangulation of random points
forming a truss-like structure.

(b) The final mesh after the application
of the Distmesh tool.

Fig. 6: An illustrative example of a generation of a uniform mesh from randomly generated points inside
a polygon.
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Fig. 7: (a) A square plate with an indicated hole and (b) starting positions of control nodes for one
particle

mesh boundary is one of them, see the original paper (Persson, 2004) for more details. The background
mesh, however, does not have to comply with requirements on a standard (e.g. FEM) computational
mesh, as it does not have to precisely follow the exact geometry. Thus construction of such mesh can
be simplified up to only two inner iterations of the DM and thus does not introduce a bottleneck to the
whole process.

5. Shape optimization method

A combination of all methods mentioned above is applied on the benchmark structure depicted in Fig. 7
taken from (Norato et al, 2004). The plate is 10 mm high as well as wide and the thickness is 1 mm. It
is symmetrically supported and symmetrically stretched, fx = fy = −1 N/mm. Young’s modulus E
is equal to 10 N/mm2 and Poisson ratio ν equals to 0.3. Control nodes, placed on the structure, define
a curve of a hole and a boundary polygon. The overall objective of the shape optimization is to find
positions of the control nodes so that the shape of the benchmark structure has minimal compliance in
the discretized form (Bendsøe and Sigmund, 2003)

min L = 1
2f

Tu, (7)
s.t. Ku = f, (8)
s.t. V = 70 mm2 (9)

with the stiffness matrix K and u and f as displacements and load vectors, respectively. Moreover, the
total volume is restricted to 70% of the original volume, i.e. to Vmax = 70 mm2. Note that OOFEM
software (Patzak (2012)) enhanced by the Isogeometric analysis (Rypl, 2012) is used for the computation
of the compliance L and the volume V of the primary mesh as well.

The single objective optimization problem is therefore composed of the objective function L en-
hanced by the penalty function ensuring fulfilment of the volume constraint. The general shape of the
penalty function used hereafter reads as

penaltyi =

(
χi
αmin

)β
∗MaxPeni, (10)

where χi is the value of the i-th equality constraint, violation of which by αmin percent is penalized with
the MaxPeni value; a parameter β then influences the steepness of the penalty curve. Particularly, in
case of the volume restriction, the penalty function is defined by

χ1 =
V

Vmax
− 1, MaxPen1 = 2, (11)

where V is the volume obtained from OOFEM using NURBS and Vmax is the requested volume men-
tioned above. Other parameters are listed in Tab. 1.
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Tab. 1: Coefficients for the PSO are following: c1 is a cognitive factor, c2 is a social factor, w is an inertia
weight, iter is the number of iterations, nop is the number of particles. Penalty functions have following
coefficients: αmin is a distance where MaxPeni penalty is assigned and β is a shape parameter.

PSO Penalty functions

c1 c2 w iter nop αmin β

2 1 0.6 100 4 0.005 2

Then, one particle Xi in the PSO represents one potential solution. Since the plate is in 2D and has
N control points, the vector Xi contains its all coordinates i.e. 2N components. The number of particles
can be set to relatively low value e.g. 4 and the number of iterations can be restricted to 100. A cognitive
factor is set to c1 = 2 according to (Wilke et al (2007)) and a social factor to c2 = 1. The second factor
is set to lower value than in (Wilke et al (2007)) because we use a less number of particles and the social
knowledge is not that important as the personal knowledge, i.e. we would like to keep the diversity of
solutions. For the sake of completeness, all important coefficients are listed in Tab. 1.

Some nodes defining the boundary are forbidden to move because of prescribed supports. It is there-
fore necessary to distinguish which components of velocities can be zeros and non-zeros, respectively.
If a movement of the node is allowed, the corresponding component in the velocity vector is at the start
of the PSO set to a random value in the range of [−1, 1]. Otherwise, the component is zero. The initial
positions of nodes are sums of starting positions depicted in Fig. 7b) and initial velocities according to
Equation 6.

In the next step of the algorithm the Distmesh tool is used. It ensures that the nodes do not move
towards each other by limiting the maximal length of the velocity terms to the half of the shortest edge
connecting the given node within the background mesh. However, this does not ensure transposing of
nodes as shown in Fig. 8a) and forming of unwanted loops on the boundary. This problem is solved by
another penalty term

χ2 = V − VDM MaxPen2 = 2, (12)

where V is the volume obtained from Isogeometric analysis and VDM is the volume obtained from the
DM background mesh; i.e. we penalize big differences between these two meshes in terms of volumes,
see Fig. 8c), which is usually the case of the loops on the boundary.

The last deficiency is an appearance of a peak with almost zero volume in pursuit of spreading out
the points, see Fig. 8b). This is again solved by the penalty approach in terms of perpendicularity of
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Fig. 8: (a) A loop which is created in case two nodes are transposed, (b) irregularity in corner nodes and
(c) a difference between a real NURBS mesh and a background mesh from the Distmesh tool
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Fig. 10: Best solutions obtained in three runs of the PSO

quoins emerged in points 1 and 10 in Fig. 7b). Penalty function is used in the following form

χ3 =

2∑

j=1

cosφj , MaxPen3 = 0.1, (13)

where φj is an angle of the boundary at points 1 and 10, respectively.

6. Results

The known analytical optimum of the selected benchmark is characterized by the ellipsoidal hole with
different radii a and b for the prescribed loadings and a volume. Note that in case of fx = fy the hole
is circular. Therefore, we have simulated the problem with two parameters a and b in the range of [1,9]
with step 0.1. The situation is depicted in Fig. 9a). The coordinates of curve’s control nodes 1, 4, 7 and
10 in Fig. 9c) are proportionally rising up thus this simple model does not cover all possible solutions.
The compliance for all values of parameters is depicted in Fig. 9b). The black points show solutions with
a proper volume 70 mm2. The objective function is minimized thus the optimum is the solution with the
minimal compliance value lying on the curve given by those black points.

Three optima of the benchmark presented in Fig. 10 are obtained with the proposed method described
in Section 5. It is clearly visible, that the problem is ill-posed since there are several local optima of the
given problem with almost identical objective values closed to the global one, see comparison of values
in Tab. 2 for the optima obtained by the parametric solution based on an analytical solution and by the
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Tab. 2: Comparison of results for reference (Norato et al, 2004) and the presented method

author method compliance volume

Norato et al (2004) mesh 16x16 16.1653 Nmm -

Norato et al (2004) mesh 32x32 16.1928 Nmm -

Norato et al (2004) mesh 64x64 16.1952 Nmm -

this paper parametric solution 14.8140 Nmm 69.999 mm2

this paper method from Section 5 14.8712 Nmm 69.996 mm2

presented approach. Also note the difference among values presented in (Norato et al, 2004) and IGA
results probably caused by different discretizations.

7. Conclusion

The presented contribution has shown a nice combination of three methods. The Isogeometric analysis
is a step towards a CAD which, as an addendum, has several advantages over the classical FEM analysis
in obtaining mechanical responses of a structure. The precise description of the geometry predetermines
IGA as a solution to the shape optimization problem. The Particle Swarm Optimization algorithm is then
characterized by a physical meaning of a group of flying particles which can utilize the inner properties
of the dynamics of particles. The shape optimization problem is difficult from the regularity point of
view. Therefore, not only limitations within the PSO have been used in this work, but also the second,
background mesh produced by the Distmesh tool has been utilized. The obtained solutions indicate
the used benchmark as ill-conditioned. However, solutions closed to a symmetric analytical solution
have been observed as well.
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