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Abstract: This paper presents a new approach for generating a Design of Experiments in constrained and
non-regular two-dimensional spaces. The methodology is based on the triangulation of the admissible space
by Delaunay Triangulation method. Then, a heuristic smoothing method for generating uniform Finite
Element meshes within the triangulated space is applied to obtain uniformly spaced designs. Although not
100% reliable, the proposed method can produce superior designs to already known optimal solutions.

Keywords: Design of Experiments, constrained design spaces, non-regular design spaces, space-filling,
Delaunay triangulation.

1. Introduction

Space-Filling Design Strategies known as a Design of Experiments (DoE) constitute an essential part of
any experimentation. Our contribution is aimed at one particular domain of constrained design spaces.
The most frequent example is the case of a mixture experiment, where individual inputs form a unity
volume or unity weight (Montgomery, 2000, Chapter 11-5). This only condition leads to the simplex
space; further limits of individual inputs then form a polytope, still convex but generally irregular space.
Therefore, all traditional DoEs (Montgomery, 2000) that are constructed for hypercube spaces cannot be
applied here.

Although the problem is known for decades, the progress of methods for DoEs does not follow cur-
rent development within the area of computer experiments (Fang et al., 2006). The main difference be-
tween classical and modern DoEs is the number of samples where, for the latter, the hundreds of samples
is a usual scenario. Then, the classical approaches based on fixed small-sample templates (Cornell, 1973,
1979) cannot be used. Up-to-date, the authors have found only few references on DoEs in constrained
design spaces. References (Petelet et al., 2010) and (Fuerle and Sienz, 2011) apply traditional Latin
Hypercube (LH) designs to a bounding box followed by a Genetic Algorithm (GA) and hill-climbing
optimization algorithms, respectively, to fulfil original constraints. Here, the LH methodology is merely
used for minimization of the searched space than for nice properties of LH designs. Another approach is
presented in (Hofwing and Strömberg, 2010), where interesting points are found by a GA and then, the
final solution is located by sequential linear programming. The solution is in this case general, however,
the computational demands are enormous.

In this paper a different approach based on Delaunay triangulation (DT) of an admissible domain and
an utilization of nice properties of the Distmesh tool (DM) (Persson and Strang, 2004) is presented.
Our results will be compared to seven constrained examples in two dimensions presented in (Hofwing
and Strömberg, 2010), namely a placing of six design points in a triangle, parallelogram, pentagon,
hexagon, heptagon, octagon and a search for a position of twelve design points in an irregular hexagon,
see Fig. 1 for optima presented in (Hofwing and Strömberg, 2010).

The paper is organized as follows. Section 2 describes three frequent objective functions that are
used for comparison of space-filling designs and that will be used hereafter. For other measures and
their comparison, see reference (Janouchová and Kučerová, 2011). Next section is devoted to the short
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Fig. 1: Reference designs (Hofwing and Strömberg, 2010). Note that designs are created in a unitless
domain [−1, 1]× [−1, 1]; the real designs are created by linear transformation to user-specific bounds.

presentation of the methodology used in referencing paper (Hofwing and Strömberg, 2010) followed by
our approach in Section 4. Finally, the fifth section presents comparison and analysis of obtained results.

2. Objective functions

Since we are interested in space-filling properties, three most common objective functions are examined.
The first is Euclidean Maximin metric (EMM) (van Dam et al., 2009; Husslage, 2006) for its simplicity
and easiness in visualization. The EMM is the minimal distance out of all distances between any two
design points and is to be maximized:

EEMM = min{..., Lij , ...}, i = 1, ..., n; j = (i+ 1), ..., n , (1)

where n is the number of design points and Lij is the Euclidean distance between points i and j. From the
experiments point of view EMM expresses the worst case scenario of the closeness of two experiments.
Even for computer experiments the assumption that an evaluation is costly is still valid. Therefore, the
possible duplicity of two closed points remains a crucial task.

The second measure is Audze-Eglais objective function (AE) proposed by Audze and Eglais in (Au-
dze and Eglais, 1977). It is based on an analogy with a potential energy of the set of points. The points are
distributed uniformly when the potential energy EAE proportional to the inverse of the squared distances
among points is minimized, i.e.
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EAE =
n∑

i=1

n∑

j=i+1

1

L2
ij

. (2)

Since the objective is a sum of distances, it is not heavily disturbed by outliers from the potential
energy point of view. Therefore, such measure represents an average property of the set of points.

The third objective function is D-optimality (Dopt) proposed by Kirsten Smith in (Smith, 1918). We
minimize a negative value of a determinant of a linear information matrix Z, i.e.

EDopt = −det(ZTZ) ,where (3)

Z =




1 x11 x12
1 x21 x22
...

...
...

1 xn1 xn2


 . (4)

3. Genetic algorithm (GA) based method

A hybrid optimization method has been proposed in (Hofwing and Strömberg, 2010) to solve irregular
DoE problems. It is based on the efficient combination of a Genetic Algorithm (GA) and a sequential
linear programming (SLP) methodology. Firstly, the GA is used to locate crude positions of individual
points and then, the SLP is applied to find nearest local optima. Particularly, a binary version of a GA
and an interior point method from Matlab is utilized. The primary objective function is the presented
D-optimality in its linear form. However, the global optima of such specified problem have duplicities,
i.e. few points share same positions. Although duplicities can be sometimes welcomed, here they are
assumed to be deficiencies of the particular designs. Therefore, the authors in (Hofwing and Strömberg,
2010) have applied Bayesian modification of an information matrix which is based on adding higher
order terms into the matrix Z. Particularly, examples from the referenced paper have been solved with
added quadratic terms. Note that some additional constant must be added to diagonal elements of (ZTZ)
to solve the singularity of the resulting matrix, see e.g. (DuMouchel and Jones, 1994) or (Janouchová
and Kučerová, 2011) for more details. Although this methodology is able to find optimal solutions, not
always they are global ones and also the computational demands are not low. Hence, a new method is
presented in the next section.

4. Method using Delaunay triangulation (DT) and Distmesh tool (DM)

A triangulation is a term suitable for 2D, generally it means the partition of the domain by simplexes.
Delaunay triangulation (DT) is the most popular triangulation method (Chen and Holst, 2011). It is
based on a convex hull of given points V describing the admissible domain, where the convex hull is the
smallest convex set containing all points in V . Then, DT triangulates the convex hull such that there is
no point of V inside the circumsphere of any simplex in the triangulation.

Because it is relatively simple to create DT and then compute a volume and other properties of
simplexes, see Appendix A, we have a rough estimation, how is the admissible region formed. An
example of utilizing such methodology has been firstly presented in (Crombecq et al., 2009) for regular
design spaces. We extended this idea for constrained design spaces by incorporating the Distmesh tool
(DM) (Persson and Strang, 2004).

In our method the domain described by corner vertices is triangulated by DT and the desired number
of random points is generated inside, see Fig. 2a). Each triangle will contain a portion of the required
number of samples based on a ratio of its volume to the total volume of the admissible space. Since
the floor command is used, the missing points to the total number of points are added to the biggest
simplex, see e.g. illustrative example in Fig. 2a), where smaller triangles get only two points, whereas the
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(a) Triangulation of the domain
with randomly generated points.

(b) Triangulation of random
points forming a truss-like
structure.

(c) The final design after the
application of the Distmesh
tool.

Fig. 2: The generation of a uniform mesh from randomly generated points.

(a) EMM

(b) AE

(c) Dopt

Fig. 3: The comparison of the DM tool and the referenced algorithm (Hofwing and Strömberg, 2010) for
three objectives; the vertical axis is the percentage of success (the bigger area, the better method), the
horizontal axis stems for 7 individual examples (triangle, parallelogram, pentagon, hexagon, heptagon,
octagon, irregular hexagon). Key: Red color = DM tool, Green color = referenced algorithm.

biggest triangle three plus three remaining. And again, since the computation of the simplexes’ volumes
is simple, see Appendix A, the procedure is very fast.

Then the DM tool is applied. The Distmesh tool is a heuristic smoothing algorithm for generating
uniform meshes (Chen and Holst, 2011). It is well-known that the most uniform meshes for the Finite
Element Method (FEM) are characterized with uniformly spaced nodes (but not vice-versa!). Therefore,
we have tried utilized this nice property of the DM tool. The DM is based on a simple dynamical system
of expanding pin-jointed structure, here characterized by the second mesh, see Fig. 2b). Those trusses
that are too short are causing repulsive forces that move the too close nodes apart, see Fig. 2c) for the
final solution. The main disadvantage apart from high computational demands is the need to return nodes
that leave the prescribed admissible domain. The DM offers solutions for basic entities, polygon used in
our computations is one of them, see the original paper (Persson and Strang, 2004) for more details.
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Fig. 4: Red points stems for the resulting design points from all 100 runs of the DM tool, green points
are reference designs (Hofwing and Strömberg, 2010).

5. Results

The proposed procedure has been run one hundred times for the sake of statistics. However, the refer-
enced paper (Hofwing and Strömberg, 2010) has only one value from one run, therefore the comparison
of these two algorithms will not be precise. The detailed results for each solved example (triangle,
parallelogram, pentagon, hexagon, heptagon, octagon, irregular hexagon) are presented in Tabs. 1–7 in
Appendix B in the barchart form along with the visualization of the best and the worst designs of our
procedure. The best designs for referenced procedure are already presented in Fig. 1. Figure 3 shows
the relative winning score (RWS)† (Nosek and Lepš, 2011) for our method and the algorithm presented
in (Hofwing and Strömberg, 2010). The RWS is a statistic of 100 runs divided into ones with better
results than reference values and ones with worse. We can see that our method clearly wins in EMM and
AE objectives, i.e. has attained a bigger area. The RWS comparison is used to save the space, for more
detailed analysis see Figs. 6–7 in Appendix C, where the boxplot results of all hundred runs are shown.
Last but not least, Fig. 4 shows the resulting design points from all hundred runs of our method on solved
examples. Note that in several examples the local optima are created by rotating the optimal position of
points around the center point.

Since the reference algorithm was optimized for Dopt objective function, it is not surprising that it
wins in this objective, but not predominantly. In all but last example our methodology was able to find a

†Note that RWS graphs are plotted by Merlin Statistical Software for Microsoft Excel http://www.heckgrammar.
kirklees.sch.uk/index.php?p=10310, particularly the Mosaic Plot has been used.
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Fig. 5: Comparison of designs for Example 1 (triangle and 6 design points). Left picture shows the
reference design (Dopt = -50.0598), right picture shows the design generated by the new method with
the best result in the Dopt objective function (Dopt = -53.0001). Lower value is better.

superior solution even for the Dopt objective. Such situation is depicted in Fig. 5, where our solution (on
right) attains a better Dopt value. The reason is probably in the added terms of Bayesian updating that
does not allow the reference procedure to find the global optimum.

Since the codes have not been deeply optimized from implementation point of view, the analysis of
computational demands cannot be rigorously done. However, we can state general requirements of the
proposed method. The random generator used for the creation of the random points before applying the
DM tool is very fast with no optimization cycle. The DM tool is the most demanding one. There is
several Delaunay triangulations inside the loop of the Distmesh tool that are needed to preserve the inner
structure to be physically consistent. And still, as is visible from the EMM performance, the Distmesh
has problems with the quality of the boundary surface mesh, see also the discussion e.g. in (Chen and
Holst, 2011).

6. Conclusions

The Design of Experiments for constrained spaces and computer experiments is relatively new and unex-
plored area. The constraints complicates the application of all contemporary DoE algorithms for regular
design spaces. The presented paper is a pioneering work that brings a new methods and unpublished
results. It is important to note that the presented method is independent on the number of dimensions
as long as the procedure of returning points lying outside the prescribed domain in higher dimensions is
provided. Using DT we are able to apply the DM tool on any irregular domain in N-dimensional space.
Only the computational demands can limit the application in higher dimensions.
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A Computation of simplex volume

Because we know the coordinates of simplex vertices, we use the formula which requires these (and only
these) inputs (MathPages, 2011).

The computation of a volume of a simplex in 2D (3 vertices):

V2 =
1

2!

∣∣∣∣∣∣

1 x1(1) x2(1)
1 x1(2) x2(2)
1 x1(3) x2(3)

∣∣∣∣∣∣

The computation of a volume of a simplex in 3D (4 vertices):

V3 =
1

3!

∣∣∣∣∣∣∣∣

1 x1(1) x2(1) x3(1)
1 x1(2) x2(2) x3(2)
1 x1(3) x2(3) x3(3)
1 x1(4) x2(4) x3(4)

∣∣∣∣∣∣∣∣

The computation of a volume of a simplex in nD (n+ 1 vertices):

Vn =
1

n!

∣∣∣∣∣∣∣∣∣

1 x1(1) x2(1) . . . . . . xn(1)
1 x1(2) x2(2) . . . . . . xn(2)
...

...
...

...
...

...
1 x1(n+1) x2(n+1) . . . . . . xn(n+1)

∣∣∣∣∣∣∣∣∣

In the notation xa(b) a is a variable (dimension) and b is a design point.
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B Results for seven individual examples

Legend for Tables 1-7: The results of 100 runs of the DM tool for 7 examples. The first row shows the
results of the EMM metric (higher is better), the second row shows the results of the AE metric (lower
is better) and the third row shows the results of the Dopt objective (lower is better). The first column
presents the barcharts of results of the selected objective over those 100 runs. The second column shows
the best and the third column shows the worst designs according to the selected objective function,
respectively. Green dash line is a reference value taken from (Hofwing and Strömberg, 2010), green
points show reference designs.
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Tab. 1: Example 1 (triangle and 6 design points).
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Tab. 2: Example 2 (parallelogram and 6 design points).
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Tab. 3: Example 3 (pentagon and 6 design points).
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Tab. 4: Example 4 (hexagon and 6 design points).
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Tab. 5: Example 5 (heptagon and 6 design points).
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Tab. 6: Example 6 (octagon and 6 design points).
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Tab. 7: Example 7 (irregular hexagon and 12 design points).
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C Boxplot results
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Fig. 6: The boxplots of results for 7 individual examples (triangle, parallelogram, pentagon, hexagon,
heptagon, octagon, irregular hexagon) and three objective functions. Black dash lines are reference
values taken from (Hofwing and Strömberg, 2010).
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Fig. 7: The boxplots of results for 7 individual examples (triangle, parallelogram, pentagon, hexagon,
heptagon, octagon, irregular hexagon) and three objective functions. Values are normalized. Black dash
line is a reference value taken from (Hofwing and Strömberg, 2010).
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