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Abstract: This contribution focuses on searching for global optima of size optimization benchmarks uti-
lizing a method based on branch and bound principles. The goal is to show the process of finding these
global optima on several examples. To minimize computational demands a suitable parallelization is used.
Optima which can be found in available literature and optima obtained in this work are compared.
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1. Introduction

A numerical optimization is nowadays a very popular tool for obtaining a different view on structures and
materials. Shape of the structure, cross-sections, amount of reinforcement, thicknesses of sheets, design
of concrete mixture and many other properties can be optimized. Recently, many heuristic algorithms
are developed, tested on benchmarks and their efficiency is compared. To compare distinct optimization
methods, it is appropriate to know the global optima of these benchmarks. The closer to the global
optimum the gained value is, the better the method is. In the past, it was not possible to obtain these
optima because of large computational demands. A computational power is growing every year therefore
now seems to be the right time to deal with this issue.

This paper is trying to outline a process of searching for global optima of sizing discrete optimization
benchmarks. Various optimization methods can be used for obtaining optima such as gradient methods
(Shewchuk (1994)), heuristics methods (Dréo et al (2005)), or evolutionary algorithms (Eiben and Smith
(2003)). These methods do not guarantee that the gained optimum is the global one because only a por-
tion of the space is explored. Nevertheless, the advantage of these methods is that the optimum is found
in a real time and the ability to obtain or at least approach a vicinity of a global optimum is considered
as a sign of quality. In our work, we used a method based on branch and bound principles to obtain
global optima and appropriate cross-sections. A good estimate of a lower and upper bounds reduces the
searched space but still ensures that the global optima can be found. The algorithm presented in our pa-
per is universal, i.e. it is applicable to other truss structures or a similar type of problems. We hope that
the knowledge of global optima of studied benchmarks will improve the development of optimization
methods.

2. Sizing optimization

Sizing optimization (Bendsoe and Sigmund (2003)) is one type of structural optimization that deals with
truss-like structures. These structures are defined by topology, material, loading, supports, and a set of
sections or alternatively minimum and maximum cross-sectional areas of the individual rods. The objec-
tive function is the weight of a structure and constraints are maximal stresses and maximal displacements,
respectively. The goal is to find cross-sections for the given structure that satisfy prescribed constraints
and have a minimal weight. The selection of cross-sections from the given set of sections defines a dis-
crete optimization problem, whereas variables chosen from given limits leads to a continuous case. The
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continuous optimization problem can be efficiently solved by mathematical programming methods like
gradient-based methods as will be shown later in the text. When using discrete variables, no such option
is available. Thus our attention is aimed at the discrete case.

3. Discrete optimization problem

The goal is to find such combination of cross-sections from the given list of profiles that leads to minimal
weight still fulfilling given constraints. Here, two methods that are able to find global optima for this
discrete optimization problem are presented.

3.1. Enumeration

An Enumeration is the simplest method for obtaining a global optimum of the discrete optimization
problem. It is necessary to compute values of an objective function and constraints for every combination
of cross-sections from a given set. Therefore, the enumeration has very large computational demands. If
there are n sections and k variables (i.e. rods or groups of rods) than nk possible solutions exist, i.e. the
problem grows exponentially with a growing number of variables. The application of the enumeration is
therefore possible only for small structures or for analysis of the vicinity of some local optima.

3.2. Method based on branch and bound principles

A branch and bound method is another method for obtaining global optima. A. M. Land and A. G.
Doig (see Land and Doig (1960)) invented this method for linear problems. It was modified for discrete
problems and for mixed-discrete variables (see e.g. Arora (2002)) many times.

A branch and bound method is based on a division of a main problem to several subproblems, so-
called branches. To estimate, which branches are to be evaluated, an existence of the lower and upper
bounds needs to be assumed, i.e. the lower and upper bounds are used to restrict the searched space.
The lower bound can be obtained by any continuous optimization method, because the global optimum
with discrete design variables will never provide a lower value of the objective function than the global
optimum with continuous design variables. The upper bound can be obtained by any heuristic method,
because a local optimum always has a greater or equal value of the objective function than the global
optimum. Since the constraints for the sizing optimization problem are more computationally demand-
ing than the value of the objective function, they are calculated only for solutions that lie between lower
and upper bounds. If we obtain a subproblem with a value of the objective function outside the given
bounds, the rest of a branch is not calculated because global optimum cannot be located there. The more
accurate estimates of the lower and upper bounds are, the narrower the searched space can be. Espe-
cially, the upper bound can be decreased during the calculation based on the already obtained objective
function’s values. Hence, the searched subspace will be reduced and a problem will be solved with less
computational demands.

4. Continuous optimization problem

A continuous optimization problem is more complex than the discrete one because an infinite number
of potential solutions exists in the space with real numbers. Therefore, it cannot be guaranteed that the
found optimum is the global one. Nevertheless, it is possible to use powerful continuous optimization al-
gorithms such as mathematical programming methods which are well established. Obtaining a potential
global optimum with continuous variables is therefore less demanding than the solution of the optimiza-
tion problem with discrete variables. The main disadvantage of this methodology is the uncertainty of
a solution quality. It can be overcome by the following alternatives:

• The branch and bound method expects that the lower bound has the same (or higher) value of the
objective function as the global optimum with continuous variables. Since the global optimum of
the continuous problem cannot be generally known, the true lower bound cannot be ensured. As
a solution, the lower bound is set to its lowest potential minimum i.e. without using any continuous
optimization method. This process provides a real global optimum with discrete variables. In most
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Fig. 1: The 5-bar truss

cases, however, the searched space will be extremely huge for computation of all possible solutions
in a real time.

• Another approaches do not fully guarantee the acquisition of the global optimum. Nevertheless,
the probability of obtaining the global optimum is acceptable. These approaches are based on an
estimation of the global optimum with continuous variables and the value of its objective function.
We use nonlinear programming that is implemented in MATLAB environment (e.g. fmincon()
function). This routine is executed several times from random initial points. If the obtained optima
do not differ from each other and the results are comparable to optima published in available
literature, the estimate is considered as credible. If the gained optima differ from each other, then
it is not possible to use them as the lower bound. The first approach (without using the continuous
optimization method) is then used or the lower bound is estimated to be e.g. 20% lower than the
best-gained value.

All continuous optima for problems mentioned below in this text were consistent with published
optima. For the sake of certainty, the nonlinear programming method was launched with different starting
vectors hundred times and the best solution was considered as the the lower bound.

5. Sizing optimization benchmarks

5.1. 5-bar truss

A representative example of a structure small enough for computational demands and bigger enough for
branching purposes was necessary for developing the branch and bound algorithm. The topology of the
structure was taken from reference Lee and Hajela (2001), constraints and a set of given cross-sections
were chosen by authors.

A structure in Fig. 1 has four nodes and five rods and is made from aluminium. The density of
the material is 0.1 lb/in3 and Young’s modulus is equal to 104 ksi. The allowable stress is limited to
±60 ksi in each rod and the displacements are limited to ±0.06 in along the horizontal and vertical
directions. Continuous variables can assume values between lower 0.01 in2 and upper bounds 0.1 in2,
respectively. Note that imperial units are used in the whole text because the gained solutions will be
compared with published optima in available literature where imperial units are usually used.

A function of nonlinear programming fmincon() (The MathWorks (2011c)) offers four vari-
ants of optimization algorithms. In this paper, a Sequential quadratic programming (SQP) is a suit-
able algorithm for continuous sizing optimization problem. It is chosen by a command options =
optimset(’Algorithm’,’active-set’). Main idea is to convert a more complicated prob-
lem to a problem that is easier to solve. Here, the constrained nonlinear problem is solved using a se-
quence of parameterized unconstrained optimizations which, in the limit (of the sequence) converge to
the constrained problem (The MathWorks (2011a)).
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A starting point, i.e. a design variable vector composed of cross-sectional areas, an objective func-
tion, constraints and lower and upper bounds of variables are necessary as an input at the beginning of
the algorithm. The objective function is a weight of the structure

m = f(Ai) = ρ ·
N∑

i=1

Ai · Li, (1)

where N = 5 is a number of rods, Ai is a cross-sectional area and Li is the length of a rod i and ρ is
density of the material. Constraints are defined as inequalities such as

max |σi| − 60 ≤ 0, (2)
max |wj | − 0.06 ≤ 0, (3)

where max |σi| is a maximal absolute value of stresses, j is an ordinal number of independent displace-
ments and max |wj | is a maximal absolute value of displacements. These values can be obtained by
several methods. In this paper, the finite element method was used as is described e.g. in Pospı́šilová
(2010).

You can see the results for the continuous optimization problem of the 5-bar truss in Tab. 1. The
objective function value of the optima gained with SQP algorithm is later used as the lower bound for
the branch and bound method.

An identical topology of the 5-bar truss is used for the discrete optimization version. Material prop-
erties and constraints are also identical. The cross-sectional areas are chosen from the set {0.01, 0.02,
. . . , 0.1 } in2. Since the structure has five rods (k = 5) and 10 cross-sectional areas (n = 10), the
number of all possible solutions is nk = 105. Therefore, the structure is small enough and the discrete
global optimum can be obtained with the enumeration. The results obtained by the enumeration can be
seen in Tab. 1.

The lower bound for the branch and bound method is set to the optimum value of the objective
function obtained with continuous variables. The upper bound is set to the estimated weight 0.23 lb
that is 25% greater than the global optimum value of the objective function gained by the enumeration.
A space is searched systematically between these two bounds until the global optimum is found.

The steps of the algorithm can be described as follows:

1. First of all we have to decide which values will be used as initial. It is appropriate to begin with
the lowest profiles and increase them because of minimization of the objective function. From
a programming point of view, it is easier to use integer variables that are the ordinal numbers of
the given set of cross-sectional areas - set M . For example, the initial design variable vector is
1 1 1 1 1, which means that the first area (0.01 in2) from the given set is attached to each rod.
For numbering of rods see again Fig. 1.

2. The value of the objective function (a weight of a structure m) is then calculated and compared
with the lower mmin and upper mmax bounds. If the weight of the structure is less than mmin, the
algorithm will go to Step 3. If the structure weight is between mmin and mmax the algorithm will
go to Step 4. If the weight of the structure is greater than mmax, the algorithm will go to Step 5.

3. The value of the objective function is less than mmin. It is necessary to find design variables’
combination with greater weight than mmin. The last variable is raised to its maximum for faster
progress of the algorithm as 1 1 1 1 10 and the value of the objective function is calculated
and compared with mmin.

(a) If the value of the objective function is still less than mmin, the algorithm searches for the
design variables’ combination with greater weight than the lower bound. This can be done
as follows. The next-to-last variable is repeatedly raised by one, e.g. to (1 1 1 2 10). If
the next-to-last variable value reaches its maximum it is decreased to its minimum and the
third from the end variable value is raised by one. The algorithm will goes to Step 2 at the
moment when all variables are set such that m > mmin.
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Tab. 1: 5-bar truss optima

Variable Units Discrete optimization Continuous optimization

Enumeration Branch and bound method fmincon()

A1 in2 0.05 0.05 0.0500

A2 in2 0.01 0.01 0.01

A3 in2 0.06 0.06 0.0471

A4 in2 0.02 0.02 0.0167

A5 in2 0.01 0.01 0.01

m lb 0.179 0.179 0.157

max |wj | in 0.059 0.059 0.06

max |σi| ksi 59.371 59.371 60.006

wlim in 0.06 0.06 0.06

σlim ksi 60 60 60

(b) If the value of the objective function is greater than the lower bound, the last variable value
is decreased to its minimum (1 1 1 1 1) and is increased one by one (1 1 1 1 2,
1 1 1 1 3, ..., etc.) until the weight is greater than mmin. If mmin > m the algorithm
goes to Step 2.

4. The value of the objective function is greater than mmin and less than mmax. The global optimum
is located somewhere in this subspace. Therefore, the constraints are evaluated, i.e the stresses and
displacements are calculated.

(a) If the constraints are fulfilled, i.e. max |σi| ≤ 60 ksi and max |wj | ≤ 0.06 in, the upper
bound is updated to the actual objective function value mmax = m. Thus the upper bound
is pushed down towards the global optimum and the searched space is reduced. The last
variable value is increased by one afterwards. If this variable value exceeds its maximal
possible value of the cross-sectional area from a given set, e.g. 1 1 5 11 1, its value is
set to the minimal possible value and the next-to-this variable value is increased by one, i.e.
1 1 6 1 1. The algorithm goes to Step 2.

(b) If the constraints are not fulfilled, the value of the last variable is increased by one.

5. The value of the objective function is greater thanmmax. The value of the last variable is decreased
to its minimum, the next-to-last variable value is increased by one and the objective function value
is calculated. If the variable exceeds its maximal possible value from the given set the algorithm
acts as in Step 4a.

(a) If the value of the objective function m is lower than mmax, the algorithm goes to Step 2.

(b) If the objective function value m is greater than mmax, a value of the third variable increases
by one and the value of the forth variable is set to its minimum. The algorithm continues in
this way until the objective function value is less than mmax. If there is no such combination
of cross-sectional areas, the task is terminated.

6. If all variable values are set to their maxima, the algorithm ends.

Fig. 2 shows a distribution of 5-bar truss potential solutions. A seagreen part shows a number of
potential solutions below the lower bound where only the objective function values are calculated, i.e.
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Fig. 3: The 25-bar truss

Step 3 of the algorithm. A blue part shows a number of potential solutions between the lower and the
upper bound where values of the objective function as well as constraints are calculated. See Step 4 of the
algorithm for more details. The global optimum is included in this subspace. A yellow part represents
a number of potential solutions above the upper bound where only the objective function values are
calculated. See Step 5 of the algorithm for more details. Tab. 1 presents results for the continuous
optimization problem along with the results for the discrete problem solved by the enumeration and the
branch and bound method. Since the enumeration calculates values of the objective function as well as
constraints for all potential solutions it is not possible to omit the global optimum. Results obtained by
both presented methods are identical and this comparison serves as verification of the branch and bound
method.

5.2. 25-bar truss

A topology of this test problem has been firstly used in reference Fox and Schmit (1966). The structure
has ten nodes and four supports (see Fig. 3); therefore there are 18 free displacements. The structure
is symmetric thus some rods were linked to groups, listed in Tab. 2. The material is aluminium with
density equal to 0.1 lb/in3 and Young modulus equal to 104 ksi. The loading is defined in Tab. 3. Every
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Tab. 2: Member grouping for the 25-bar truss

Group of bars Conectivities

A1 1-2

A2 1-4, 2-3, 1-5, 2-6

A3 2-5, 2-4, 1-3, 1-6

A4 3-6, 4-5

A5 2-4, 5-6

A6 3-10, 6-7, 4-9, 5-8

A7 3-8, 4-7, 6-9, 5-10

A8 3-7, 4-8, 5-9, 6-10

Tab. 3: Loadings for the 25-bar truss (kips)

Node Fx Fy Fz

1 1.0 -10.0 -10.0

2 0 -10.0 -10.0

3 0.5 0 0

6 0.6 0 0

cross-sectional area is chosen from the given group: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1,
1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.8, 3.0, 3.2 and 3.4 in2, see reference
Wu and Chow (1995). Continuous variables can assume values between a lower 0.1 in2 and an upper
bound 3.4 in2, respectively. The allowable stress is set to ±40 ksi in all rods and maximal allowable
displacement is ±0.35 in at all nodes along the x, y and z directions.

The same methodology was used for the 25-bar continuous optimization case as for the 5-bar truss
problem. The results are shown in Tab. 4 and they are compared with the results published in available
literature. The discrete case cannot be enumerated in a reasonable time because the number of potential
solutions is nk = 308 = 6.561 · 1011, where k is a number of rod groups. The discrete global optimum
was gained with the branch and bound method, where the lower bound was set to the gained optimum
from continuous optimization and the upper bound was set as the worst available solution from literature
(see Rajeev and Krishnamoorthy (1992)). The algorithm is the same as in the 5-bar truss problem.

6. Parallelization

The 25-bar truss is relatively computationally demanding. Since the evaluation of solutions is indepen-
dent to each other (except updating the upper bound mmax described in Step 4a of the algorithm), it is
possible to run the method in a parallel way. Nowadays, modern computers are equipped with several
core processors and thus it is appropriate to use this computational effort. MATLAB environment offers
several tools of parallelization which are presented in this section.

The simplest parallelization method is to permit usage of all cores 1 by the maxNumCompThreads()
command, see Luszczek (2009) for more information. There is no need to change a serial code; MAT-

1It is possible to permit only a subset of all available cores such as two cores out of four.
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Tab. 4: Comparison of results for the 25-bar truss continuous case

Variable Unit Perez & Behdinan this paper

2007 2011

A1 in2 0.1 0.1

A2 in2 0.457 0.421

A3 in2 3.4 3.4

A4 in2 0.1 0.1

A5 in2 1.937 1.917

A6 in2 0.965 0.966

A7 in2 0.442 0.471

A8 in2 3.4 3.4

m lb 483.84 483.82

max |σi| ksi 6.15 6.13

max |wj | in 0.35 0.35

σlim ksi 40 40

wlim in 0.35 0.35

LAB does all parallelization by itself. This variant of parallelization is not the best one because the user
cannot mark appropriate parts for parallelization and also shared memory cannot be accessed.

Another possibility is to use a parfor loop instead of for. Every iteration of a parfor loop is
independently executed on individual cores. For proper functioning of the parfor loop, it is neces-
sary to prepare an appropriate number of processes/threads, so-called labs, by command matlabpool
open N, where N is the number of opened labs. This reserves a collection of MATLAB worker sessions
to run the loop iterations. The number of labs can be equal to the number of cores or less. Every lab has
own part of the parfor loop. However, the user cannot specify any partition of data. It is also impor-
tant to know that there is also no possibility to work with shared memory. Therefore it is not possible
to update the upper bound value efficiently and therefore, this way of parallelization is not useful for the
branch and bound method.

The last possibility mentioned here is the spmd method which means Single Programm Multiple
Data, see e.g. The MathWorks (2011b) for more details. The spmd statement separates the block of
a code to be run simultaneously on multiple labs. As well as in the parfor loop method, the command
matlabpool open N open a required number of labs. Sending data to another lab is possible by the
labSend(data, X) command, where X is the index of receiving lab where the data are sent. Then, it
is necessary to receive the data by the labReceive(Y) command, where Y is the index of a lab from
which the data will come. It is appropriate to split the data only at one, so-called master, lab and receive
data with the others, so-called slaves. The master can process its own data as well.

The main problem here is to estimate a proper amount of data for every lab. If the data are sent too
often the communication between the master and the slaves will take a plenty of time. In the 25-bar
truss task, permutations with repetition are generated in advance for several groups of rods (i.e. four
groups) and the remaining groups of rods (other four groups) are generated in the branch and bound
method independently on each labs. In advance generated combinations are divided in the for loops to
individual labs and then the algorithm continues as in the algorithm written for the 5-bar truss task. The
maximal values of mmax are collected at the end of every iteration. The smallest one is chosen as a new
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Fig. 5: A graph of the decreasing upper bound for the 25-bar truss problem

mmax and resent to every lab as an initial value of mmax for another iteration. If all data are used, the
smallest value of mmax is taken as the global optimum.

For the parallel version of the algorithm, it is important how well the task is scaled, whether the
parallelization is useful or not. Ideally, we would like to achieve linear scaling i.e. speed-up of n on n
cores. However, it is very hard to obtain linear scaling, e.g. because of time spent on communications.
Fig. 4 shows a graph where speed-up of the parallel algorithm is compared on 1 to 8 labs2. HP Xeon
Z600 Workstation with two 4-cores processors Intel Xeon E5520, frequency 2.27GHz was used for
computations within Matlab R2009a 64-bit in Debian GNU/Linux.

7. Conclusions

Fig. 5 shows a graph with the decreasing upper bound mmax for the 25-bar truss problem. The value of
mmax determines the best solution in a progress of the algorithm. It can be interpreted as a convergence
of the objective function to the global optimum. In advance generated combination were sent to eight
labs by fifty. The number of iterations were 304/(8 · 50) = 2025. The global optimum was gained in
the 66th iteration. It is necessary to note that if the formulation of the task was in a different way, the
global optimum would be gained in another iteration. Since a task is to find the global optima, the whole
subspace of potential solutions must be search for and it is not possible to shorten the computation.

2It was not necessary to compute the whole task. Some variables have been fixed to prescribed values, here 2 out of 8 variables,
and the algorithm has been run with this restriction.
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Tab. 5: A comparison of results for the 25-bar truss discrete case from literature and the present work

Variable Units this Kripka Lemonge & Li & Wu & Coello Rajeev &

paper Barbosa Liu Chow Krishnamoorthy

B & B SA GA PSO GA GA GA

2011 2004 2004 2009 1995 1994 1992

A1 in2 0.1 0.1 0.1 0.1 0.1 1.5 0.1

A2 in2 0.4 0.4 0.3 0.3 0.5 0.7 1.8

A3 in2 3.4 3.4 3.4 3.4 3.4 3.4 2.3

A4 in2 0.1 0.1 0.1 0.1 0.1 0.7 0.2

A5 in2 2.2 2.2 2.1 2.1 1.5 0.4 0.1

A6 in2 1 1 1 1 0.9 0.7 0.8

A7 in2 0.4 0.4 0.5 0.5 0.6 1.5 1.8

A8 in2 3.4 3.4 3.4 3.4 3.4 3.2 3

m lb 484.33 484.33 484.85 484.85 486.29 539.78 546.01

max |σi| ksi 6.20 6.20 6.11 6.11 6.01 6.66 6.77

max |wj | in 0.35 0.35 0.35 0.35 0.35 0.34 0.35

σlim ksi 40 40 40 40 40 40 40

wlim in 0.35 0.35 0.35 0.35 0.35 0.35 0.35

Tab. 5 shows the optimum gained with the branch and bound method as well as optima obtained
by heuristic algorithms found in literature. The obtained result by the branch and bound method is
identical to the solution presented by author Kripka. He used the Simulated Annealing method. However,
he did not search the whole subspace of possible solutions so he could not be sure that the obtained
optimum is the global one. It can be seen that the results of the discrete and continuous case of the
optimization problem are near to each other, see Tab. 4 and Tab. 5. Therefore, the solution is potentially
correct. However, we can be sure that we have found the global optimum because we have systematically
explored the whole space where the global optimum is located.

The branch and bound method is suitable for bigger structures. It does not enumerate all potential
solutions of the optimization problem contrary to the enumeration method. The space is restricted to the
subspace between the lower and the upper bound where the global optimum is located. The lower bound
is obtained e.g. with some continuous optimization method. The constrained nonlinear programming
using sequence of parameterized unconstrained optimization was used in this paper. The upper bound
can be gained with some heuristic method which is fast and quite effective. The more accurate the value
is, the efficient the branch and bound method is. The task will not be branched to so many subproblems.

Global optima for computational demanding tasks such as the 25-bar truss problem have not been
published yet to the best authors’ knowledge. We hope that by publishing the algorithm as well as
the value of the global optimum we will introduce a standard of quality that will help to improve new
optimization methods.
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