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Abstract: Explicit integration plays a key role in many problems of linear and non-linear dynamics. For
example, the finite element method applied to spatial discretization of continua leaves a system of ordinary
differential equations to be solved, which is often done by the central difference method. This and similar
explicit schemes suffer from magnification of the round-off errors if the time step exceeds certain fixed length
known as the critical time step.The corresponding critical Courant number (Cr, dimensionless time step) is
inversely proportional to the maximum natural frequency of the system. The well known recommendation
Cr = 1 is deemed as the best. In fact, for some configurations this choice may dangerously overestimate the
true value. It was shown in an earlier paper by the same authors that by increasing the number of elements
in the finite element mesh one will paradoxically improve the mesh’s stability towards its theoretical limit.
The present paper refines some details, presenting small scale numerical tests. The first test involves a
long truss/bar consisting of one row of elements whose critical Courant number changes as elements are
added one after another. Since this increases the critical number one may pick up a time step such that
it is supercritical to a certain mesh but becomes subcritical by merely adding one element. In a similar
fashion, a square area is tested in the second example, using different arrangements of edge supports. It is
concluded that the usual setting, Cr = 1, is not entirely safe.
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1. INTRODUCTION

Detailed analysis of accuracy and stability of finite element wave propagation solutions was presented
in review paper Plešek et al. (2010) and references cited therein for various finite elements including
consistent and lumped mass matrices. The critical Courant number limiting the length of the time step
in explicit integration schemes, namely the central difference method, follows from the famous formula

Crcrit =
2

ω̄
(1)

where ω̄ is the dimensionless frequency

ω̄ =
ωmaxH

c1
(2)

with ωmax being the maximum natural frequency of a finite element mesh, H the element size, and
c1 the speed of the fasted wave propagating in a continuum, typically the longitudinal wave. Nearly
equally famous recommendation Cr = 1 (or slightly less to be on the safe side) for linear finite elements,
also known to engineers as “rule of thumb” is deemed to be best. In fact, this observation comes from
dispersion analysis but, as it has been shown in Ref. Plešek et al. (2010), for some configurations it
may dangerously overestimate the critical time step. It was also shown that by increasing the number
of elements, N , in the finite element mesh one will improve the mesh’s stability towards Crcrit = 1 as
N →∞, which is rather a paradoxical finding.

The present paper refines these details, presenting small scale numerical tests, which exemplify some
peculiarities. The first test involves a long truss/bar consisting of one row of elements whose critical
Courant number changes as elements are added one after another. Since this increases the critical number
one may pick up a time step such that it is supercritical to a certain mesh but becomes subcritical by
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merely adding one element. In a similar fashion, a square area is tested in the second example, using
different arrangements of edge supports. It turns out that the numerical solutions to wave propagation
may be strongly influenced by small variation of distant boundary conditions, which should normally be
physically insignificant. Finally, the third illustration shows the direct numerical results relevant to the
above mentioned choices of sub and supercritical times steps.

2. PROBLEM DESCRIPTION

This section concerns with essentials of wave propagation in homogeneous solids, finite element tech-
nology and dispersion computation.

2.1. Propagation of waves in an elastic isotropic continuum

The ith equation of motion in linear elastodynamics reads

(Λ +G)uj,ji +Gui,jj = ρüi (3)

In this equation, Λ and G are Lamé’s constants, ρ is the mass density and ui is the ith component of
the displacement vector. Furthermore, a comma placed before subscripts refers to spatial differentiation
whereas the superimposed dots denote the time derivatives. The summation convention on repeated
indices is assumed. The Lamé constants Λ, G may be related to engineering constants E, ν as

Λ =
νE

(1 + ν) (1− 2ν)
, G =

E

2 (1 + ν)
(4)

where E and ν are Young’s modulus and Poisson’s ratio.

In an unbounded isotropic continuum, two types of planar waves exist: the longitudinal wave and
two transversal waves, featuring mutually orthogonal polarisation. The longitudinal wave propagates
with the speed

c1 =

√
Λ + 2G

ρ
(5)

The speed of the two transversal waves is

c2 =

√
G

ρ
(6)

The standard continuum is said to be non-dispersive. This is, by d’Alembert’s solution, because the wave
profile (wavelength) does not affect the velocity of propagation.

As a special case, one may consider a plane harmonic solution to Eqn. (3) as

ui = Ui(x) exp(ik (p · x± ct)) (7)

or its equivalent form
ui = Ui(x) exp(i(k · x± ωt)) (8)

where i =
√
−1 is the imaginary unit; x is a position vector; t is time; k is the wave number; p is the unit

normal to the wave front; k is the wave vector, k = kp; c is the phase velocity; ω is the angular velocity;
and Ui is the ith component of the amplitude vector at the point defined by the position vector x. For
a given wavelength λ, the wave number k may be computed from

k =
2π

λ
(9)

The phase velocity c is related to ω and k by

c =
ω

k
(10)

Finally, the group velocity cg is defined as

cg =
dω
dk

(11)

In non-dispersive systems, c is a constant and since ω = ck, we get cg = c. Thus, in the absence of
dispersion the group velocity equals the phase velocity. On the other hand, cg 6= c indicates dispersion.
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2.2. Finite element method

Spatial discretization by the finite element of an elastodynamic problem introduces the ordinary differ-
ential system

Mü + Ku = R (12)

Here, M is the mass matrix, K the stiffness matrix, R is the time-dependent load vector, and u and ü
contain nodal displacements and accelerations. The element mass and stiffness matrices are given by

Me =

∫

V
ρHTH dV (13)

and
Ke =

∫

V
BTCB dV (14)

where C is the elasticity matrix, B is the strain-displacement matrix, H stores the displacement interpo-
lation functions and integration is carried over the element domain. Global matrices are assembled in the
usual fashion. Under plane strain conditions, the elastic matrix C takes the form

C =
E

1− ν2




1 ν 0
ν 1 0

0 0 1−ν2
2(1+ν)


 (15)

The mass matrix defined by Eqn. (13) is called the consistent mass matrix.

Explicit integration methods, such as the central difference method discussed later, require the mass
matrix inverted. Thus, it is advantageous to have it diagonal or lumped. In contrast to consistent matrices,
which are uniquely defined by the variational formulation, lumping procedures are not strictly prescribed.
The only common principle is the ability of FEM to assemble diagonal global matrix from the element
mass matrices, thus, lumping may be performed on an element basis. Out of many methods rendering
the mass matrix diagonal we shall refer to the simplest: the row sum method (RS) for bilinear elements
and the Hinton-Rock-Zienkiewicz method (HRZ) for quadratic elements—see Ref Plešek et al. (2010).

In the subsequent analysis, a regular Hx × Hy mesh composed of plane rectangular elements is
considered with Hx and Hy measuring the length of element edges aligned with coordinate axes. It
proves useful to define reference matrices M̄e, K̄e for a parent element having unit properties E and ρ,
unit thickness b and unit length Hx = 1. Then performing integration over the reference domain 1 × r
one gets

Me = brH2
xρM̄e (16)

and
Ke = bEK̄e (17)

Therefore, a class of problems is defined by two constants: the Poisson ratio ν and the aspect ratio
r = Hy/Hx. Within this class, the reference stiffness matrix K̄e is a function of ν and r whereas the
reference mass matrix M̄e is independent of both. Denote by ω̄e the maximum natural frequency of
a single element described by these unit matrices. For example, one may compute ω̄e = 2.39 for the
bilinear RS elements or ω̄e = 7.61 for the quadratic serendipity HRZ elements.

2.3. Dispersion computation

The smooth solutions, Eqn. (7) and (8), no longer apply to discretized system (12). In this case, the
speed of propagation of an harmonic wave depends on its angular frequency. According to Ref. Plešek
et al. (2010), such dependence may be manifested by the dispersion plot shown in Fig. 1. In general,
dispersion behaviour is investigated by considering an harmonic wave train travelling through unbounded
mesh, which may be accomplished by prescribing periodic boundary conditions. Thus, the normalized
frequencies read off the plot actually represent the limit natural frequencies corresponding to a very large
(theoretically infinite) finite element mesh.

As in the preceding section, denote by ω̄λ the supreme value of the normalized angular frequency in
Fig 1, e.g. ω̄λ = 2.00 for bilinear elements and ω̄λ = 7.37 for quadratic elements. It is worth mentioning

Plešek J., Kolman R., Gabriel D. 1003



0 0.2 0.4 0.5 0.6 0.8 1
0

2

4

6

8

H / λh

ω
 H

 / 
c 1

longitudinal
exact

transverse
exact

0 0.2 0.4 0.5 0.6 0.8 1
0

2

4

6

7.374
8

H / λh

ω
 H

 / 
c 1

longitudinal
exact

transverse
exact

Fig. 1: Dispersion curves for bilinear (left) and serendipity (right) elements.

that ω̄λ < ω̄e in every case. It should also be noted that the dispersion diagrams discussed in this text
are entirely due to spatial dispersion, neglecting effects of time integration—refer to paper Plešek et al.
(2010) for complete treatise. This by no means oversimplifies actual problems since they are namely
these theoretical values that enter stability criteria.

2.4. Explicit time integration and numerical stability

As a representative of explicit schemes, reviewed in Reference Subbaraj and Dokainish (1989), the cen-
tral difference method (CDM) will be discussed. Its discrete operator reads

1

∆t2
Mut+∆t = Rt − (K− 2

∆t2
M)ut − 1

∆t2
Mut−∆t (18)

where Rt contains forces acting on the nodal points at time t. It is well known that CDM is only
conditionally stable, Ref. Park (1977), that is

∆t ≤ 2

ωmax
(19)

where ωmax is the maximum eigenfrequency of the finite element mesh. The highest frequency can
be computed by the standard FE software, aiming at the lowest eigenvalue with K and M swapped.
This method was indeed employed in all the numerical computations presented here. Alternatively, the
crititical time step may be estimated analytically as in Ref. Flanagan (1981).

At this point, it is convenient to introduce the Courant dimensionless number defined as

Cr =
c1∆t

H
(20)

In elastodynamics, c1 is the velocity of the longitudinal wave. Using the latter definition and that of ω̄ in
Eqn. (2), the stability condition (19) can be rephrased as

Cr ≤ 2

ω̄
(21)

or, defining Crcrit, in the form of Eqn. (1). Inequality Cr ≤ 1 then exactly manifests the Courant-
Friedrichs-Lewy stability condition for the linear truss element Subbaraj and Dokainish (1989) but for
other elements it may not be generally valid. On the other hand, we know, by Fried’s theorem Fried
(1972), which is a direct consequence of Sturm’s polynomial separation property, that the maximum
frequency is bounded by ω̄e obtained as the maximum eigevalue taken over all the elements in the FE
mesh.

If the mesh is regular, composed only of rectangular elements of the same aspect ratio (the so-called
structured mesh), one may devise another estimate of the critical time step, which lends some interesting
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Fig. 2: Eigenvector corresponding to the highest frequency of a bar with free ends.

insight into the problem of numerical stability in general. One asymptotic case arises for the infinite
mesh, when ωmax equals the supremum taken over all the dispersion curves for the particular element,
i.e., ω̄λ is exploited. Tentatively, one may conjecture

ω̄λ ≤ ω̄ ≤ ω̄e (22)

This expression is indeed valid for an abitrary body with free boundary, Γu = ∅, but does not hold for a
constrained mesh, for instance, if some displacement boundary conditions are prescribed. The meaning
of the statement (22) will be clarified in full by examples shown in the next section.

Finally, it should be pointed out, that precisely because of the inequality (22), the true frequency of a
real mesh will probably be higher than the estimate stemming from dispersion theory. Hence, the popular
formula c1∆t = H for the determination of time step length is not entirely safe.

3. NUMERICAL EXPERIMENTS

Unit dimensions were set in the numerical tests as follows: mass density ρ = 1, Poisson’s ratio ν = 0.3,
and Young’s modulus E = 0.7428 . . . so that c1 = 1 and c2 = 0.5345 . . .. Furthemore, plane strain
square bilinear elements with edge length H = 1 and unit thickness, b = 1, were employed. The reason
for chosing linear rather than quadratic elements to illustrate stability properties is that the difference
between ω̄λ = 2.00 and ω̄e = 2.39 is greater for these elements. Having N elements in the mesh, the
total mass is m = NρH2b = N .

3.1. Plane strain bar

As the first example we consider a plane strain bar whose length is variable depending on the number of
elements used. Fig 2 shows the eigenmode corresponding to the bar’s maximum frequency for 40 × 1
discretization. The value of frequencies computed for various Ns are listed in Tab. 1.

One important observation following the inspection of Tab. 1 is that starting from the 20× 1 bar, the
maximum frequency does not change within the first 8 digits, which suggests an existence of the limit.
Alas, this limit, ω̄ = 2.16, differs from the theoretical value ω̄λ = 2.00. On the one hand, our sequence
correctly starts at ω̄e = 2.39 for 1 × 1 discretization, but on the other, the asymptotics Crcrit = 1 has
never been reached. Why is it so? The answer lies in Fig 2. Since only the free ends vibrate, the
maximum eigenvalue does not depend on the bar’s length but solely on this boundary effect. The limit
solution will not fit the periodical boundary conditions characteristic of the dispersion approach.

Tab. 1: Critical Courant numbers for the bilinear finite element mesh of a free bar.

N ω̄ Crcrit

1x1 2.3904568 0.8366602
2x1 2.1837346 0.9158622
3x1 2.1865457 0.9146848
4x1 2.1664669 0.9231620
5x1 2.1649080 0.9238268
6x1 2.1621023 0.9250256
7x1 2.1616266 0.9252292

N ω̄ Crcrit

8x1 2.1612303 0.9253988
9x1 2.1611334 0.9254403
10x1 2.1610747 0.9254654
20x1 2.1610454 0.9254780
40x1 2.1610454 0.9254780
80x1 2.1610454 0.9254780

100x1 2.1610454 0.9254780
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Another interesting observation follows from the graphical representation depicted in Fig. 3 on the
log scale. Apart from the limit, there is a pronounced gap between the three and four element configura-
tions. Selecting Cr = 0.92, the time step is stable for the 4 × 1 mesh but unstable for the smaller 3 × 1
mesh. This motivates the critical test defined in Fig. 4.
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Fig. 3: Distribution of the critical Courant number for the bar with free ends.

F = 1/2 F(t)1

H

H

N H

F = 1/2 F(t)2 A

Fig. 4: Transient problem with Heaviside load; unstable configuration.

A three-element bar is loaded by the Heaviside step function F (t) = 1 for t > 0. Since Cr =
0.92 > Crcrit one expects an incursion of instability after some time has elapsed but a stable solution if a
four-element problem had been considered instead. In both the cases, parabolic displacement evolution

u(t) =
F

2m
t2 =

t2

2N
(23)

applies to the motion of the whole body. The average acceleration, 1/N , measured at the control point
A for the 4 × 1 configuration equals 0.25. The existence of the stable solution is confirmed by plots
shown in Fig. 5. The oscillatory course of acceleration history is due to waves reflection about the mean
value 0.25, which matches the rigid body motion. By contrast, the unstable 3 × 1 problem exhibits the
solution’s uncotrolled blow up at about t = 3000, see Fig. 6. The instability commences even much
earlier after several wave reflections, which is nicely captured in Fig. 7.

Let us return to the original eigenvalue problem shown in Fig. 2. This time the boundary conditions
are modified by clamping the right end. The corresponding eigenvector and the frequencies computed
are shown in Fig. 8 and Tab. 2, respectively. The same limit ω̄ = 2.16 is reached already by the 8 × 1
discretization, which is not surprising. Indeed, the vibration modes roughly correspond to those of the
free bar twice the length of the free-fixed bar. A more interesting fact is that the maximum frequency
now increases. This is because the results converge to the same limit as before but for each N -element
bar the constrained configuration has lower maximum frequency than the free one. The critical Courant
number distribution is shown in Fig. 9

We close our discussion concerning this example with the remark that the conjecture (22) does not
hold for a constrained problem. For example, for the free-fixed bar ω̄λ > ω̄1×1, because the maximu
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Fig. 5: Displacement, velocity and acceleration in the stable 4× 1 computation.
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Fig. 6: Displacement, velocity and acceleration in the unstable 3× 1 computation.

frequency has been reduced by the imposition of the boundary condition. Theoretically, one could even
have had ω̄ = 0 if all the nodes had been fixed. By contrast, ω̄e always forms the upper bound.

3.2. Plane strain square domain

Similar examples as in the preceding section may be analysed. Consider a plane strain square do-
main shown in Fig. 10 and the critical Courant number distributions for both (fixed and free) boundary
configurations—Fig. 11.

In this case, convergence to the limit Crcrit = 0.99 is observed. Similarly as for the free bar this num-
ber is slightly less than the theoretical value Crcrit = 1. The reason can again been seen in Fig. 10, which
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Fig. 7: Detail of acceleration build up.

Fig. 8: A free-fixed bar.

suggests that it is the vibration of the corner elements that is responsible for the maximum frequency and
is, in fact, independent of the mesh size.

A new phenomenon is detected with the constrained mesh. Comparing it with the free-fixed bar
one notices that, here, zero displacements are prescribed along the whole boundary. This means that
adding extra elements is merely equivalent to mesh refinement, which in turn implies the increase of the
dimensionless maximum frequency. Since the mesh grading is regular and there are no boundary effects,
monotonous convergence to the theoretical limit, Crcrit = 1, follows. It is interesting to note that also in
this situation ω̄ < ω̄λ, which violates condition (22) as the present problem is fully constrained.

4. CONCLUSIONS

It might seem at first glance that, except illustrating certain mathematical principles, the present study
bears little importance to real-world computation. On the one hand, todays engineering problems are
extremely large (rendernig N → ∞ effectively) and, on the other, one may safely use the upper bound
by calculating the maximum eigenvalue of a single element.

Tab. 2: Critical Courant numbers for the free-fixed bar.

N ω̄ Crcrit

1x1 1.8403500 1.0867498
2x1 2.1530847 0.9288998
3x1 2.1587386 0.9264670
4x1 2.1608547 0.9255597
5x1 2.1609985 0.9254981
6x1 2.1610395 0.9254805
7x1 2.1610425 0.9254793

N ω̄ Crcrit

8x1 2.1610454 0.9254780
9x1 2.1610454 0.9254780
10x1 2.1610454 0.9254780
20x1 2.1610454 0.9254780
40x1 2.1610454 0.9254780
80x1 2.1610454 0.9254780
100x1 2.1610454 0.9254780
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Fig. 9: Distribution of the Critical Courant number for the free-fixed bar.

Fig. 10: Maximum eigenmode of a free square domain (left) and the domain with fixed edges (right).
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Fig. 11: Critical Courant numbers for free (left) and fixed domain (right).

It should be borne in mind that Fried’s estimate, ω̄ ≤ ω̄e, is only useful for a structured mesh when
all the elements have the same spectrum. For an unstructured mesh, this information is hardly available
and one must resort to other estimates. It is namely under such circumstances that the analysts use the
ω̄λ limit derived from dispersion diagrams often unaware of its pitfalls. It must be emphasised that for
the reasons exaplained in the paper the frequent recommendation c1∆t = H is not entirely safe.
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The examples involving free bodies clearly demonstrated the way the vibration of corner elements
changed the stability limits. Hence, we conclude that even distant boundary conditions, which should
normally be physically insignificant, may considerably influence numerical solution.
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