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Abstract: Isogeometric analysis has been recently introduced as a viable alternative to the standard,
polynomial-based finite element analysis. One of the fundamental performance issues of the isogeomet-
ric analysis is the quadrature of individual components of the discretized governing differential equation.
The capability of the isogeometric analysis to easily adopt basis functions of high degree together with the
(generally) rational form of those basis functions implies that high order numerical quadrature schemes
must be employed. This may become computationally prohibitive because the evaluation of the high degree
basis functions and/or their derivatives at individual integration points is quite demanding. The situation
tends to be critical in three-dimensional space where the total number of integration points can increase
dramatically. The aim of this paper is to compare computational efficiency of several numerical quadrature
concepts which are nowadays available in the isogeometric analysis. Their performance is assessed on the
assembly of stiffness matrix of B-spline based problems with special geometrical arrangement allowing to
determine minimum number of integration points leading to exact results.

Keywords: Isogeometric analysis, numerical quadrature, Gaussian quadrature, Bezier extraction, half-
point rule.

1. Introduction

The concept of the isogeometric analysis (IGA) (see papers Hughes (2005); Cottrell (2009)), initially
motivated by the gap between the computer aided design (CAD) and the finite element analysis (FEA),
builds upon the concept of isoparametric elements, in which the same shape functions are used to ap-
proximate the geometry and the solution on a single finite element. The IGA, as its name suggests, goes
one step further because it employs the same functions for the description of the geometry and for the
approximation of the solution space on that geometry. This implies that the isogeometric mesh (dis-
cretization for computational purposes) of the CAD geometry encapsulates the exact geometry no matter
how coarse the mesh actually is. As a consequence, the need to have a separate representation for the
original CAD model and another one for the actual computational geometry is completely eliminated.

The isogeometric approach has been originally developed (see paper Hughes (2005)) using the
NURBS (non-uniform rational B-splines – Rogers (2000); Piegl (1997)) which are the basic building
blocks in most CAD systems and which allow precise representation of wide class of objects (e.g. con-
ics and quadrics). To overcome several drawbacks related to handling of NURBS patches (propagation
of the refinement through the entire control grid, difficult merging of adjacent patches and handling of
trimmed patches, etc.), this approach has been recently extended to so-called T-splines (see papers Seder-
berg (2003); Bazilevs (2010)) which are a generalization of NURBS. The advantage of T-splines consists
in the fact that they allow truly local refinement, without propagating the entire row of control points,
which enables efficient merging of several NURBS patches of different parameterization into a single
gap free model of C0 or higher order continuity (see papers Sederberg (2004); Bazilevs (2010)).

It has been shown (see papers Hughes (2005); Cottrell (2006, 2007); Auricchio (2007); Lipton
(2010)) that the IGA outperforms the classical FEA in various aspects (accuracy, robustness, system
condition number, etc.), which is the consequence of several important advantages of the IGA com-
pared to the FEA. On the other hand, the computational effort of the IGA, especially when using higher
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order basis functions, seems to exceed that for the FEA. The significant source of the computational
inefficiency has been identified to be related to the numerical quadrature of individual components of
the discretized governing differential equation (for example in the context of structural mechanics, of
stiffness matrix, mass matrix, load vector, etc.). The basic computational scheme of the IGA resembles
very much that of the FEA with the only difference that instead of performing the numerical quadrature
on individual finite elements the quadrature is accomplished over individual non-zero knot spans∗∗∗ of
the underlying B-spline based geometry. Due to the tensor product structure of the basis functions on
individual knot spans of a two- and three-dimensional B-spline patch, the Gaussian quadrature schemes
used for (so much popular) quadrilateral and hexahedral finite elements can be readily adopted in the
IGA.

Analogical concept of Gaussian quadrature is also offered by the Bezier extraction approach (see pa-
pers Borden (2011); Scott (2011)) typically used when implementing the IGA into existing finite element
computational codes. This approach utilizes the fact that the smooth B-spline basis can be constructed
as a linear combination of a C0 Bernstein polynomials which are the basis functions on the so-called
Bezier element. Note that the coefficients of the linear combination are dependent only on the parame-
terization of the B-spline patch and are independent of the geometry (position of control points) itself.
The beauty of this approach consists in the fact that the code does not have to implement the B-spline
technology. It is enough to implement rather simple Bernstein polynomials in the interpolation engine
(similarly as the standard Lagrange polynomials) and to apply appropriate linear operator (so-called the
extraction operator) which hides the transformation between the C0 Bernstein basis and smooth B-spline
basis and which is typically part of the input data. Since the individual Bezier elements correspond to the
individual non-zero knot-spans, the Gaussian integration over individual Bezier elements is equivalent
to the Gaussian integration over the individual non-zero knot spans. There is, however, one important
difference. Because the Bernstein polynomials are defined over the same parametric domain (typically
from 0 to 1) and because the degree of Bernstein basis is the same for all Bezier elements within a sin-
gle B-spline patch, the values of individual Bernstein basis functions and their derivatives are the same
at individual Gauss integration points on all Bezier elements and can be therefore precomputed (only
once) and stored (also only once) thus saving potentionally a huge number (depending on the number of
integration points) of their evaluations.

Recently, there has been initiated a study (see paper Hughes (2010)) on efficient quadrature schemes
for the NURBS-based IGA which profits from the continuity of higher degree B-spline basis functions
between adjacent knot spans compared to the C0 continuity of the basis functions between classical finite
elements. While the Gaussian quadrature is optimal for the C0 continuous finite elements, it is far from
optimal for smooth B-spline basis functions spanning several consecutive knot spans. By taking into
account the precise smoothness of the basis functions across boundaries of infinite number of uniform
knot spans, a simple integration rule (so-called half-point rule) independent (in terms of the number of
integrations points, not in terms of their location) of the degree of the polynomial basis and having (in
1D) just one integration point per two knot spans has been derived. For practical purposes, however,
integration rules corresponding to open non-uniform finite knot vector are desirable. These rules can be
obtained by numerical solution of a system of non-linear equations which is computationally demanding
and which is worth only if the rules are applied repeatedly many times. Therefore only rules on 2, 3,
4, or 5 consecutive uniform knot spans for few cases of degree of practical interest have been derived.
Although these rules only approach the best possible performance, the savings, especially in 3D, are
significant.

The aim of this paper is to compare the efficiency of the above three approaches within the same
software (Patzak (2012)) using the same programming techniques. The results of the comparison are
given in the following Section. The discussion of the results together with the concluding remarks are
given in Section 3.

∗∗∗In the context of the IGA, the non-zero knot spans are often called elements.
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Fig. 1: Examples of geometry of investigated B-spline patches: (a) 1D:4-3, (b) 2D:3-4, (c) 3D:2-5

2. Quadrature schemes and comparison of their efficiency

Although the discussed quadrature schemes are used generally for (only approximate) integration of
rational functions, they can handle precisely only polynomials. Therefore the examples on which the
quadrature schemes have been tested are chosen to be B-spline patches with orthogonal system of
isoparametric curves with control points defined by Graville’s coordinates (see Fig. 1). This ensures
that all components as well as the determinant of the Jacobian matrix are constant. In order to enable
application of half-point rules (derived in paper Hughes (2010)), the (open) knot vectors describing the
parameterization of the B-spline patch are always uniform having from 2 to 5 non-zero consecutive knot
spans. Since the efficiency of these rules is dependent on the actual number of knot spans, the same num-
ber of knot spans is used for each spatial dimension. Furthermore, the available half-point rules limit the
adopted uni-variate B-spline basis to degree 2, 3, and 4†. All the problems have been run in one-, two-,
and three-dimensional space. The particular jobs are identified as xD:y-z where x ∈ {1, 2, 3} stands for
the spatial dimension of the problem, y ∈ {2, 3, 4} denotes the degree of B-spline basis functions (com-
mon for all spatial dimensions), and z ∈ {2, 3, 4, 5} indicates the number of uniform knot spans (also
common for all spatial dimensions). For example, 2D:3-4 denotes two-dimensional analysis of degree
3× 3 with 4× 4 non-zero uniform knot spans (see Fig. 1).

The investigated quadrature schemes are the following

• GSR – Gauss Standard Rule,
• GBE – Gauss rule on Bezier Elements,
• GPS – Gauss rule with basis functions Precomputed for all knot Spans,
• HPR – Half-Point Rule.

Quadrature scheme GPS, considered only to assess the slow-down of GBE due the application of the
extraction operator, is similar to GBE in that the values of B-spline basis functions and their derivatives
are precomputed. However, since the concept of Bezier extraction is not adopted in GPS scheme, the
precomputed values must be stored for all knot spans. Note that due to the tensor product structure of the
Gauss rules, only the uni-variate B-spline functions and their derivatives are stored for individual spatial
directions in GPS as well as in GBE.

The performance of individual quadrature schemes has been assessed by measuring the time needed
for the assembly of complete stiffness matrix (in the symmetric skyline format). In order to make the
time measurable, the stiffness matrix has been assembled repeatedly, namely 106 times for 1D problems,
104 for 2D problems, and 102 for 3D problems. Recalling that the Jacobian matrix is constant, the
integrated terms of the stiffness matrix are uni-variate polynomials of order equal to 2p − 2 in 1D case
and multivariate (but of tensor product structure) polynomials of order 2p (in each variable) in 2D and
3D case, where p denotes the degree of B-spline basis functions. This allows to select the appropriate

†The case of degree 1 is not interesting, because then the IGA is identical with FEM and the Gaussian quadrature is optimal
in such a case.
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Tab. 1: Pseudo-code for the evaluation of the stiffness matrix

compute_stiffness_matrix {
initialize K_global;
loop over all B-spline patches (Bp) {

loop over all integration rules (ir) of Bp {
initialize K_local;
loop over all integration points (ip) of ir {

B = compute B_matrix at(ip);
D = compute D_matrix at(ip);
J = compute Jacobian at(ip);
K_local += BˆT.D.B.J;

}
assemble K_local to K_global;

}
}
return K_global;

}

quadrature rule with minimum number of integration points which still leads to exact results. Note,
however, that for HPR scheme, only the rules for the integration in spaces with C0 continuity, namely in
spaces ϕ2,0, ϕ4,0, ϕ6,0, and ϕ8,0

‡ (see paper Hughes (2010) for details) have been adopted.

A typical pseudo-code for the assembly of the stiffness matrix (on an abstract level) using the Gaus-
sian quadrature is presented in Table 1. Each knot span is associated with an integration rule (see papers
Rypl (2012a,b)) which stores individual integration points, position of which are defined within that
single knot span. Note that at all integration points within the same integration rule, the same basis func-
tion attain non-zero value. Such an implementation can be easily adopted for the half-point quadrature
schemes. It is just enough to localize the individual integration points, distribution of which is defined
over several consecutive knot spans, into individual knot spans and create corresponding integration
rules.

The results of individual analyses are summarized separately in Tables 2, 3, and 4 for spatial dimen-
sion 1, 2, and 3, respectively. Note that the elapsed time does not account neither for precomputing the
values of B-spline basis functions and their derivatives (for schemes GBE and GPS) nor for the eval-
uation of the extraction operator (in GBE scheme) which is also precomputed and stored. Except the
timing, also some additional quantities are provided to complete the information:

• Ctrl pnts - total number of control points describing the B-spline patch,
• G* tip - total number of integrations points for GSR/GBE/GPS schemes,
• G* ip/s - number of integrations points in a single direction on a single knot span for GSR/GBE/

GPS schemes,
• HPR tip - total number of integrations points for HPR scheme,
• HPR ip - number of integration points in a single direction on the whole patch for HPR scheme.

The inspection of 1D results in Table 2 reveals that the times needed by GSR and HPR schemes are,
not surprisingly, approximately in the ratio of the total number of integration points. It also shows that
the application of GBE scheme leads to significant speedup which increases with the growing degree of
B-spline basis functions (as the demands for their evaluation are growing). Therefore the GBE scheme
outperforms the HPR scheme, which is obvious especially for degree 3 and 4. From the table it is also
apparent, that the costs of GBE (compared to GPS) due to the application of the extraction operator are

‡See Appendix A for coordinates and weights of integration points for exact integration in ϕ8,0.
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Tab. 2: Summary of 1D jobs assembling 106 times stiffness matrix (timing in seconds)

Job Ctrl G* G* GSR GBE GPS HPR HPR HPR
id pnts tip ip/s time time time tip ip time

1D:2-2 4 4 2 6.7 4.6 4.0 3 3 5.7

1D:2-3 5 6 2 10.5 7.0 5.9 4 4 7.2

1D:2-4 6 8 2 13.4 9.3 7.6 5 5 9.8

1D:2-5 7 10 2 17.2 11.6 9.6 6 6 11.0

1D:3-2 5 6 3 12.2 7.3 6.1 5 5 10.3

1D:3-3 6 9 3 18.5 10.8 8.9 7 7 14.9

1D:3-4 7 12 3 24.8 14.0 11.9 9 9 19.2

1D:3-5 8 15 3 31.2 18.1 15.0 11 11 23.5

1D:4-2 6 8 4 19.1 10.9 8.6 7 7 17.0

1D:4-3 7 12 4 29.3 15.6 13.1 10 10 25.2

1D:4-4 8 16 4 38.8 23.3 17.3 13 13 33.0

1D:4-5 9 20 4 50.1 29.1 22.3 16 16 40.6

quickly growing with the increasing degree as the size of the extraction operator grows as well. In the
case of results of 2D analyses (see Table 3), the situation changes quite considerably. While the ratio
between the time consumed by GSR and HPR schemes is still in reasonable agreement (however not
as good as for 1D case) with the ratio of total number of integration points used in these schemes, the
profit from precomputing the values of basis functions and their derivatives is much less pronounced,
which causes that HPR scheme is generally better than any of the Gauss based schemes. It is also
worth to note that the cost of Bezier extraction for the 2D case is, compared to 1D, diminishing. This
is, however, not caused by the improved efficiency of the Bezier extraction in 2D but by the decrease
of its participation in the overall computational demands, which are enlarged by two facts. Firstly, the
evaluation of the derivatives of basis functions with respect to Cartesian coordinates is more complex
and secondly, the size of matrices B and Klocal handled in the stiffness matrix assembly algorithm (see
Table 1) is growing rapidly with the increasing degree. Assuming that the degree is the same in both
spatial directions (which is the considered case), the number of basis functions which are non-zero at
a particular integration point is growing with square of the degree. This effect becomes critical in 3D
(see Table 4) where there is virtually no difference between individual Gauss based schemes. In this case
the size of matrix Klocal grows with the cube of the degree of the B-spline basis functions. Thus the
costs related to the computation of the product BTDBJ are dominating and the overall assembly time,
for a given degree, is more or less linearly dependent on the total number of integration points. Since the
total number of integrations points for HPR scheme is much smaller than the number used by the Gauss
based schemes, HPR scheme in 3D is apparently superior to GSR, GBE as well as GPS scheme for all
degrees and number of knot spans. It is interesting to see, however, that despite the fact that the costs
of the numerical quadrature in 3D are driven predominantly by the evaluation of the product BTDBJ
(not of its components), the times for GSR and HPR schemes are only approximately in the ratio of the
total number of integration points. A detailed inspection of the profiling information has uncovered that
the time consumed by the function evaluating the product BTDBJ per integration point is noticeably
smaller for GSR scheme. This could be attributed to the effect of caching Klocal because the number of
processed integration points per integration rule is generally higher for GSR scheme compared to HPR
scheme.
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Tab. 3: Summary of 2D jobs assembling 104 times stiffness matrix (timing in seconds)

Job Ctrl G* G* GSR GBE GPS HPR HPR HPR
id pnts tip ip/s time time time tip ip time

2D:2-2 16 36 3 2.2 1.7 1.6 25 5 1.5

2D:2-3 25 81 3 4.8 3.8 3.6 49 7 3.0

2D:2-4 36 144 3 8.5 7.2 6.5 81 9 5.0

2D:2-5 49 225 3 13.6 10.7 10.1 121 11 8.0

2D:3-2 25 64 4 6.9 6.0 5.6 49 7 5.7

2D:3-3 36 144 4 15.4 13.3 13.1 100 10 11.9

2D:3-4 49 256 4 27.9 23.5 22.6 169 13 19.4

2D:3-5 64 400 4 43.3 37.7 35.3 256 16 30.1

2D:4-2 36 100 5 19.4 17.7 16.7 81 9 17.6

2D:4-3 49 225 5 44.1 39.5 38.2 169 13 36.8

2D:4-4 64 400 5 78.5 70.2 68.0 289 17 62.1

2D:4-5 81 625 5 121.1 109.7 105.8 441 21 94.8

3. Conclusions

In this paper, a study of computational efficiency of several numerical quadrature schemes available for
the IGA has been performed. The performance of the schemes has been assessed on the assembly of
the stiffness matrix on such a geometrical arrangement of a B-spline patch that the minimum number
of integration points leading to exact results could have been safely determined. The investigation has
revealed that the main source of the computational costs of the numerical quadrature is dependent on
the spatial dimension qualitatively as well as quantitatively. While in 1D the prevailing costs are related
to the expensive evaluation of basis functions and their derivatives and are increasing with the degree
and consequently with the complexity of the B-spline basis functions, in 3D, the dominating costs are
associated with the assembly of the contributions to the stiffness matrix at individual integration points,
number of which as well as the size of the contributions is also growing with the degree. This implies
that in 1D, faster algorithms are those which profit from the precomputed values of the basis functions
and their derivatives (such as GBE scheme). In 3D, on the other hand, since the critical factor is the total
number of integrations points, the quadrature rules that benefit from taking into account the continuity
between the knot spans (such as HPR scheme) are the better ones. In 2D, both effects are combined. The
numerical evidence shows, however, that the HPR scheme is more appropriate than GBE scheme.

In the current implementation of two- and three-dimensional GSR, GBE as well as HPR schemes,
there is still some space for savings. For example, the evaluation of particular components of the stiffness
matrix could be accelerated if they are computed on the level of integration rule rather than on the level of
integration point, because the locally precomputed uni-variate quantities (on the level of integration rule)
can be repeatedly reused (due to the tensor product structure) for all integration points within the same
integration rule. The preliminary results reveal, however, that this effect is of only a little significance in
2D and completely negligible in 3D.

An important issue is related to the fact that in reality the integrated functions are only rarely polyno-
mials. More commonly, the integrated terms are of rational character as the consequence of non-constant
Jacobian (does not matter whether due to the location of control points§ of a B-spline geometry or because

§Note that while in the FEA the Jacobian (more precisely, its variation) could be reasonably controlled by the quality of the
finite element mesh, in the IGA, the analyst does not have usually such a possibility as he/she is stuck with the geometry.
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Tab. 4: Summary of 3D jobs assembling 102 times stiffness matrix (timing in seconds)

Job Ctrl G* G* GSR GBE GPS HPR HPR HPR
id pnts tip ip/s time time time tip ip time

3D:2-2 64 216 3 1.3 1.3 1.3 125 5 0.8

3D:2-3 125 729 3 4.5 4.3 4.3 343 7 2.3

3D:2-4 216 1728 3 10.6 10.2 10.1 729 9 5.0

3D:2-5 343 3375 3 20.8 20.1 20.0 1331 11 9.1

3D:3-2 125 512 4 13.7 13.6 13.6 343 7 10.2

3D:3-3 216 1728 4 46.4 46.1 46.0 1000 10 30.1

3D:3-4 343 4096 4 110.2 109.5 108.8 2197 13 66.3

3D:3-5 512 8000 4 217.3 215.2 214.5 4096 16 125.1

3D:4-2 216 1000 5 93.0 92.9 92.6 729 9 75.8

3D:4-3 343 3375 5 315.6 314.2 314.0 2197 13 228.8

3D:4-4 512 8000 5 747.1 744.6 745.8 4913 17 512.6

3D:4-5 729 15625 5 1456.8 1458.5 1457.3 9261 21 967.7

of using non-uniform weights in a NURBS geometry). In such a case, the common practice to select the
quadrature rule under the assumption that the Jacobian is constant may lead to significant error. Thus the
over-integration when using Gaussian quadrature rule may play also a positive role. Moreover, taking
into account the fact that the derivation of half-point rule for non-uniform knot spans is computationally
prohibitive, especially if large number of spans and high degree of basis functions is considered, and that
refining the knot vector to (at least piece-wise) uniform knot vector leads to increase of both the number
of control points (and thus also problem unknowns) and the number of integration points, the use of
standard Gaussian quadrature per non-zero knot span still remains competitive approach (in a general
case). This, however, implies that the question of numerical quadrature in the IGA remains open and that
there is a strong need to further search for efficient quadrature rules.
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Appendix A.

In this Appendix, the quadrature schemes (not presented in paper Hughes (2010)) for the exact integration
in ϕ8,0 on the interval [0, 1] with 2, 3, 4, and 5 uniform knot spans are provided. Coordinates and weights
of quadrature points, summarized in Tables 5 – 8, have been computed by the numerical procedure
outlined in paper Hughes (2010) using the MATLAB fsolve tolerance 10−12.
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Tab. 5: Coordinates and weights of quadrature
points for exact quadrature in ϕ8,0 on the interval
[0, 1] with 2 uniform knot spans

# Coordinate Weight
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9 0.971447901942741 0.071856780395612

Tab. 6: Coordinates and weights of quadrature
points for exact quadrature in ϕ8,0 on the interval
[0, 1] with 5 uniform knot spans

# Coordinate Weight

1 0.011420839222904 0.028742712158246

2 0.055368602727625 0.056271203029890

3 0.116718086473782 0.062365304595146

4 0.172048027131244 0.044620780216714

5 0.206831767683998 0.033121642297043

6 0.252360380590827 0.057525896479555
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Tab. 7: Coordinates and weights of quadrature
points for exact quadrature in ϕ8,0 on the interval
[0, 1] with 3 uniform knot spans

# Coordinate Weight

1 0.019034732038173 0.047904520263742

2 0.092281004546041 0.093785338383150
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7 0.500000000000000 0.098392732354997

8 0.593167743154074 0.082907772643406

9 0.657884303815822 0.047895861179092

10 0.713253288114593 0.074367967027856

11 0.805469855877029 0.103942174325245

12 0.907718995453959 0.093785338383150

13 0.980965267961827 0.047904520263742

Tab. 8: Coordinates and weights of quadrature
points for exact quadrature in ϕ8,0 on the interval
[0, 1] with 4 uniform knot spans

# Coordinate Weight
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4 0.215060033914055 0.055775975270892
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8 0.464346168473608 0.056917044204120

9 0.500000000000000 0.020408163265306

10 0.535653831526392 0.056917044204120

11 0.606237588385041 0.079569450692479

12 0.684549524261460 0.071907370599436

13 0.741460290395000 0.041402052871308

14 0.784939966085945 0.055775975270892

15 0.854102391907772 0.077956630743933

16 0.930789246590482 0.070339003787363

17 0.985723950971371 0.035928390197806
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