
 

 

 

VIBRATION CONTROL OF CARBON BRIDGES 
 

Alexander Tesar*)  

Abstract: Tuned vibration control in aeroelasticity of slender carbon fiber and laminated wood bridges 
is treated in present paper. The approach suggested takes into account multiple functions in aeroelastic 
analysis and flutter of such slender bridges subjected to laminar and turbulent wind flow. Tuned vibration 
control approach is presented with application on actual bridge. Some results obtained are discussed.  
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1.    Introduction 
A multilevel approach for the local micromechanics analysis of carbon nanotube based composite 
materials is suggested. Carbon nanotubes are seen as graphene sheets rolled into hollow cylinders 
composed of hexagonal carbon cells. The hexagonal cell is repeated periodically and binds each 
carbon atom to three neighboring atoms with covalent bonds, creating one of the strongest chemical 
bonds today, with impressive mechanical properties.    

      A long-standing difficulty in designing of carbon fiber composites is the formulation of a 
consistent theory that describes their failure behaviour under nonuniform stress fields. As problem 
appears there the discrepancy between the four-point bend and simple tensile test data. The bend 
specimens fail at higher strain compared with the tensile specimens. When the bend and tensile data 
are analysed using classical linear elastic theory the bend stress at any strain prior to failure of a tensile 
test specimen is 20 - 35 % higher than corresponding uniaxial tensile stress. Such strength discrepancy 
remains unresolved even when corrections are made for the nonlinearity of the stress-strain curves. By 
attempts to explain such discrepancy only very limited success has been achieved with failure theories, 
including the Weibull`s statistical model and the fracture mechanics approach. Similar experiences 
also appeared by the application of linear fracture mechanics or couple-stress theory.  

      The carbon fiber composites adopted in present structural engineering are made of typical 
components listed as:       

1. carbon fibers, with strength and elasticity moduli in scope 2.2 – 5.7 GPa and 300 – 700 GPa, 
respectively,   

3.   aramide fibers, with strength 3.5 GPa and elasticity moduli in scope 80 – 185 GPa.  

      The composites consist of micromechanical fibers and surface resin skin. The calculation on the 
micromechanical level takes into account the behaviour of single fiber in interaction with another 
fibers and with surface skin. In present time is made the development of new types of fiber composites 
equipped with surface skin on the basis of advanced ceramics or metals having high strength and load-
bearing capacity as well as increased temperature resistance and fatigue reliability.    

      The material instability appearing in the failure process of carbon fiber composites is treated below 
adopting the fiber kinking theory and using the analysis on the micromechanical  level. In this paper 
following is submitted: 1. fiber kinking approach for the failure analysis of carbon fiber composites, 2. 
mathematical formulation of governing equations for modeling and numerical treatment of the 
problem, 3. numerical and experimental assessment with actual structural application.  

      Advanced slender wood bridges (Fig.1)  are to be designed in such a way that no load  can  disturb  
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their reliability. However, the experiments sampled up indicate that ultimate behaviour of such 
structures occurring due to wind can initiate unpredictable ultimate response influencing their safety. 
Ultimate flutter behaviour of such bridges occurs by laminar and turbulent air-flow along the surface 
of the main girder. Linear theory specifies a critical pressure at which the bridge motion becomes 
unstable. The linear theory specifies the flutter boundary but cannot give information about ultimate 
flutter response. For large amplitude oscillations the nonlinear effects restrain the motion to a bounded 
value with growing amplitudes as dynamic pressure increases. 

 

Fig. 1ː   Schema of the bridge with TVC-equipment 

 
      One measure to control such response is the application of tuned vibration control (TVC) in 
special joints adopted on the bridge. The monitoring and identification of actual parameters, the 
selection of target reliability and optimal tuning by evaluation of amplification curves are made in 
tuning joints either automatically for each forcing situation occurring or are set up stationary for the 
assumed range of forcing. The TVC controls the length of time interval in which the flutter response 
remains stable with limited amplitudes.  

      Slender main girders of bridges studied are made of laminated wood. Carbon fiber composites are 
adopted for cables. Such bridges, when subjected to laminar or turbulent air flow, can be forced into 
ultimate flutter response with large amplitudes and unstable aeroelastic behaviour. The monitoring 
submits all data for the TVC. The forces in wind cables are automatically varied in order to control the 
response. The TVC-software in tuning joints allows updated identification of all structural and forcing 
data, their evaluation, monitoring, optimization and consequently the control of structural response. 

      The treatment and modeling of turbulent air flow in artificial boundary layer around the bridge is 
a research domain based on advanced scientific technologies. They are imposed by necessity of 
studying the turbulent air movement in the proximity of slender structures. The models of turbulent air 
flow are used in the assessments being validated by tunnel testing of parameters integrated in 
calculation.  

Aeroelastic response depends on wind speed, wind direction, wind flow (laminar or turbulent), wind 
temperature and humidity, snow and ice loads, geometry and configuration of wood bridges studied, 
dynamic properties of all structural elements.  

      There occur the turbulent air flows on edges of the main girder which increase the wind speeds and 
pressures. Regarding the variability of configurations of bridges with artificial boundary layer there 
appear combined laminar and turbulent wind flows. The measurements in aerodynamic tunnel submit 
the data required for the analysis of the problem.   
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2.   Analysis 

 
Slender wood bridges are prone to wind-induced vibrations for various reasons. Some issues 
considered in their wind resistant design are mentioned by: 

1. Wind turbulences force the bridge with a considerable power and the movements owing to 
turbulences and associated mechanisms are stochastic in nature.   

2. There is produced a strong vortex wake associated with aerodynamic drag force experienced 
by the bridge. Depending on wind speed and cross-section’s shape, the shedding of vortices is 
more or less regular with shedding periods inversely proportional to the wind speed. In 
resonance conditions the structure’s oscillation can control the rhythm of the vortex shedding.  

3. Aside the known vortex trail type excitation the more general types of forcing appear in the 
bridge. The vortices generated by the local geometry and movement of the bridge contribute 
to such forcing. 

4. Aeroelastic forces proportional to the movement of the bridge produce self-induced divergent 
vibrations at some wind speeds.   

5. In the design of bridge is to be avoided that absolute value of negative aerodynamic damping 
exceeds the positive mechanical damping producing across-wind flexural mode instability. 
Associated critical wind speed is the flutter velocity while corresponding circular frequency is 
the flutter frequency.  

6. At the onset of divergence the aerodynamic instability of the bridge is initiated. 
 

      In this paper the wind induced structural phenomena are treated by transient dynamics. Laminar 
and turbulent wind forcing is studied adopting the wave propagation approach. The goal is to develop 
the approach based on transient dynamics combined with wave propagation forcing and adopted for 
the analysis of aeroelastic response of slender bridges. 

3.    Basic principles 
       

The wind flow field is described by the velocity field ŵ which is the function of location vector r and 
of time t and is given by 

ŵ = f(r,t)                                                                 (1) 

The location vector in Cartesian system is  

r = i.x + j.y + k.z                                                         (2) 

and the velocity vector is 

ŵ = i.v + j.u + k.w                                                        (3) 

with parameters 

v = f1(x,y,z,t)                                                             (4) 

u = f2(x,y,z,t)                                                             (5) 

w = f3(x,y,z,t)                                                            (6) 

As velocity potential is introduced, the scalar function Φ (x,y,z) is given by 

ŵ = grad Φ                                                              (7) 

The scalar terms of equation (3) are specified by velocity components  

v = ∂Φ/∂x                                                               (8) 

u = ∂Φ/∂y                                                               (9) 

  w = ∂Φ/∂z                                                            (10) 
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The Bernoulli equation for non-stationary wind flow is given by 

∂Φ/∂t + w.w/2 + ∫ 1/ρ dp = F(t)                                              (11) 

In order to obtain energetic relations for volume unit of the wind flow, each term of Eq. (11) is to be 
multiplied by the density of the wind flow ρ. The term ρ.(∂Φ/∂t+w.w/2) represents kinetic energy 
available, dp is energy of the dynamic flow occurring and ρ.F(t) is energetic balance of the wind flow 
studied. The lift force on the bridge is given by  

F = ∫ (pd – pu) dp                                                       (12) 

with pd and pu as values of pressures on lower and upper surface of the main girder studied. The 
pressure is modeled by translation flow with constant speed and by flow with circulation Γ≠0 for each 
closed profile of the main girder of the bridge. There pays  

F = ∫ ρ.b.ŵ.Γ                                                          (13) 

with b as width of the bridge girder studied. The circulation Γ depends on air velocity, air flow angle, 
geometry and environment of the bridge.    

4.   Wind model 

Turbulent air flow and wind gusts are given by intensity, spectral distribution and coherence. In order 
to generate the wind effects as occuring actually there appear the wind models giving data and 
parameters for 10-minute constant wind velocity steps as well as frequency spectrum and coherence 
properties of turbulences appearing. The basic parameter of such wind model (König and Zilch, 1970) 
is a 10-minute average step vG of a standard 50-year wind velocity in atmospheric boundary layer 
studied. The profile of 10-minute wind velocity vw is established in accordance with exponential law 
by 

vw = vG (z/zG)α                                                                 (14) 

with height z, with zG as corresponding gradient height and with α as exponent for the wind profile 
studied. The variability of wind velocity σ is defined as a standard aberation of the gusts in the wind 
direction. In accordance with the wind model σ is constant along zG and is given by  

σ = zo. vG.√(6.β)/zG                                                              (15) 

where zo=10 is the comparative height and β is the roughness parameter (König and Zilch, 1970). 

      As further parameter of the wind model appears the atmospheric coherence. It describes the 
similarity of speed variability in various points n along the span and height of the bridge and is given 
by 

CH(A,B,n) = √{[G AB(n).GAB(n)+QAB(n).QAB(n)]/[SAA(n)+SBB(n)]}                     (16) 

with A and B as two nodes of the bridge model used, SAA(n) and SBB(n) as turbulence spectra 
measured in A and B, GAB(n) and QAB(n) as covariance and quadrature spectra of vw(A,t) and vw(B,t), 
respectively. Equation (16) specifies time vs propagation of the wind gusts appearing.        

5. Aerodynamic forces 

Studied is the plane panel of the main girder of the wood bridge subjected to wind flow initiating 
aerodynamic forces as shown in Fig. 2.  

      In case of simultaneous action of critical velocity of the air flow and of the resonance frequency of 
bridge vibration there appears the flutter combination of flexural and torsional oscillations. For linear 
analysis of the problem the cross-section studied is an ideal smooth panel and the bridge is forced by 
laminar air flow along the whole length studied. The aerodynamic forces in accordance with the theory 
of Theodorsen (1935) are given by 

L1 = -2.π.ρ.b.vw.C(k).[vw.υT + i.ω.ui + i.b/(2.ω.υT)]                                      (17) 

L2 = 2.π.ρ.ω.b2.ω.ui                                                           (18) 

L3 = -π.ρ.b2.vw                                                              (19) 

L4 = π.ω2.ρ.υT.b
4/8                                                           (20) 
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ε = εo.e
i(ωt-α)                                                                (28) 

For complex modulus of elasticity there holds 

E = E1 + i.E2 = σ/ε                                                           (29) 

with real and imaginary components given by 

E1 = σo.cos α/εo                                                             (30) 

E2 = σo.sin α/εo                                                              (31) 

Damping factor η is given by 

η = tg α = E2/E1                                                             (32) 

and is included into complex moduli of elasticity 

E = Eo (1 + i.η)                                                              (33) 

G = Go (1 + i.ηe)                                                             (34)  

where ηe is the shear damping factor. The structural damping is approximated by complex spring 
characteristics 

kB = ko (1 + i.ηB)                                                             (35) 

specified by elastic supports or joints. The parameters ko and ηB are defined as the spring constant and 
the factor of structural damping. The structural damping appears in interaction with the material 
damping.  

      In the hysteretic model the damping forces generated by material friction are proportional to 
deformations. The loss factor is equivalent to energy dissipated. There can appear theoretical  
noncausalities because hysteretic damping approach holds only for steady state harmonic oscillations. 
However, the numerical and laboratory experiments have experienced the small influence of such 
theoretical malfunctioning in the analysis of nonperiodic dynamic problems, such as are flutter control 
and ultimate response of the wood bridges studied.  

      The TVC of wood bridges is made by computer operated variation of hysteretic, viscous and 
viscoelastic parameters in damping facilities of tuning joints as well as in energy absorbing members 
adopted. In hysteretic members the damping forces generated by material friction are proportional to 
the deformations occurring. The tuning thus depends on stress vs displacement dependence of the 
stiffness appearing. The specific work of the total damping is given by 

D = J σn                                                                    (36) 

where J and n are experimentally found parameters (Lazan, 1968). The total work of damping is 
obtained by integrating specific works of material and structural members adopted. The variability of 
stress causes that each material particle has its own hysteresis curve contributing to total damping. 
Within the element volume Vg the maximum stress σmax corresponds to maximum work od damping 
Dmax and the work of tuning is given by 

Dg = Dmax Vg β1                                                             (37) 

with nondimensional parameter β1 (Lazan, 1968). The energy cumulated in analyzed volume is  

Ug = 0.5 Vg σmax
2 β2/E                                                         (38) 

again with nondimensional parameter β2 (Lazan, 1968). The factor of damping for analyzed volume is 
given by 

ηs = Dg/(2π Ug)                                                             (39) 

and is implemented into complex modulus of elasticity in accordance with the stress available. For 
linear damping there holds β1/β2=1. The ultimate analysis with nonlinear damping is based on the 
assessment of β1 and β2 for given geometry and stress. An iterative scheme is used for specification of 
damping factors in each element of the bridge. In the first iteration the parameters β1

(1)
, β2

(1) and ηs
(1)

 

are specified for the stress level available. Such parameters are the basis for following iteration steps 
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specifying actual incremental stress and corresponding parameters β1
(i)

, β2
(i) and ηs

(i). The analysis is 
continued until satisfaction of convergence criterion 

|ηs
(i+1)/ηs

(i)| - 1 ≤ 0.01                                                            (40) 

When analyzing the viscous damping in the TVC-joints adopted, the substitution of complex stiffness 
by an equivalent viscous damping is to be made. Such a shift from one model of damping into another 
one has to be made in order to ensure the same amount of energy dissipation per cycle of vibration in 
the hysteretic model 

∆Whysteretic = 2 π η K uo
2                                                          (41) 

as well as in the viscous damping model 

∆Wviscous = 2 π ωo C uo
2                                                           (42) 

The terms K and C are stiffness and damping matrices, respectively, and uo is the vector of 
deformations of the bridge oscillating with frequency ωo. The damping capacity of the viscous 
member is defined as ratio of the energy ∆W dissipated per cycle of vibration vs maximal stored 
energy per cycle 

ψ = ∆W/W = 2 π ξ                                                               (43) 

The damping capacity is in such a way related to hysteretic loss factor η based on complex modulus of 
elasticity and on viscous damping ratio ξ. The damping capacity of viscoelastic damping member 

ψo = ψvol + ψdev                                                                 (44) 

is splitted up into volumetric (ψvol) and deviatoric (ψdev) parts. The volumetric part is considered to be 
simply elastic and viscoelastic behaviour is principally related to the deviatoric part. The stress is 
splitted up into elastic and dissipative parts. In constitutive equation there holds 

σ = σelastic + σdissipative = E ε + λ έ                                                      (45) 

with Young modulus E, with strain ε, strain rate έ and with λ as viscosity constant of damping member 
studied. There holds 

λ = υ E                                                                          (46) 

where υ is the relaxation time. In strain ε = B.u and strain rate έ = B.ú the parameters u and ú are nodal 
vectors of deformations and velocities, respectively. The matrix B consists of derivatives of shape 
functions applied. 

      Environmental air causes additional interactive damping in aeroelastic response of wood bridges. 
For assessment of total damping is to be dealt with residual value of dissipative energy given by 

W = ∆W + ∆L                                                                    (47) 

with dissipative components of structural damping ∆W as mentioned above and dissipative part of 
environmental damping ∆L. When taking into account the air incompressibility which holds for wind 
velocities v < 50 m/sec (the density variability of air for such velocities is less than 1%), for constant 
air pressure q there holds 

q = ρ v2/2                                                                       (48) 

where ρ is the air density. Such pressure appears on the motionless bridge forced by constant air flow 
with velocity v. Additional damping force is given by 

CL = c A ρ v2/2                                                                    (49) 

with area A of the bridge and with coefficient c as explained below. The damping force CL is valid for 
stationary process, e.g., for constant velocity of the air flow. However, when dealing with ultimate 
response, the non-stationary circumstances are to be considered. The resulting force acting on the 
bridge is then given by 

CR = cd A ρ v2 + cm AD ρ a                                                             (50) 

with wind acceleration a. In Eq.(50) besides constant pressure term there appears one additional term 
corresponding to the gyration mass. The coefficients c, cd and cm are given in Davenport (1961. The 
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gyration forces depend on additional virtual mass of the air pressed in front of the bridge. For small 
amplitudes the air damping is proportional to velocity of the bridge. For large amplitudes the air 
damping depends on the resistance force given by constant pressure of wind flow on the bridge. 
Aeroelastic interaction bridge vs air flow causes further additional damping of dynamic motion. There 
appear aerodynamic dissipative forces and damping is given by phase shifts of motions and forces 
appearing. The amplitudes of aerodynamic forces increase linearly with the wind velocity. 

7.    Tuned vibration control 

The system identification for each forcing situation appearing together with structural response, 
optimization and monitoring are principal operations made in the TVC-joints. The system 
identification is a part of modeling with data basis available from updated structural and forcing 
situations measured. The analysis of structural response considers all linear and nonlinear interaction 
effects appearing. The optimization and monitoring take into account the target functions adopted in 
order to control the bridge response. The tuning joints contain the facilities for variability of forces in 
wind cables in the TVC, taking account of : - updated frequency spectrum of the bridge studied; is 
initiated by variability of forces in wind cables, - updated damping parameters of the bridge studied; 
are influenced by damping facilities and energy absorbers in structural system and in the TVC-joints 
adopted, - updated monitoring of time response of the bridge.   

 

Fig. 3ː  TVC-alternatives 
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