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Summary: The set of a heavy metallic ball which is rolling freely inside a semi-
spherical dish with larger diameter, being fixed to structure, is frequently used as
tuned mass damper of vibration. Ratio of both diameters, mass of the rolling ball,
quality of contact surfaces and other parameters should correspond with charac-
teristics of the structure. The ball damper is modelled as a non-holonomic sys-
tem. Hamiltonian functional including an adequate form of the Rayleigh function
is formulated in moving coordinates using Euler angles and completed by ancillary
constraints via Lagrangian multipliers. Subsequently Lagrangian differential sys-
tem is carried out. Together with rolling conditions the governing system of seven
equations is formulated. Later Lagrangian multipliers character is analysed and
redundant motion components are eliminated. First integrals are derived and main
energy balances evaluated together with their physical interpretation. Discussion
of basic dynamic properties of the system is provided.

Keywords: Non-holonomic systems, Hamilton functional with constrains, Mov-
ing coordinates, Non-linear vibration, Vibration ball absorber

1. Introduction

Passive vibration absorbers of various types are very widely used in civil engineering, especially
when wind induced vibration should be suppressed. TV towers, masts and other slender struc-
tures exposed to wind excitation are usually equipped by such devices. Conventional passive
absorbers are of the pendulum type, see e.g. (Haxton & Barr, 1974), where auto-parametric
type absorber is described. Although they are very effective and reliable, they have several
disadvantages limiting their application. First of all, they have certain requirements to space,
particularly in a vertical direction. These requirements cannot be satisfied any time when an ab-
sorber should be installed as a supplementary equipment. Also horizontal construction, like foot
bridges, cannot accept any absorber of the pendulum type. Another disadvantage represents a
need of a regular maintenance.

Both above shortcomings can be avoided using the absorber of ball type. The basic principle
comes out of a rolling movement of a metallic ball of a radius r inside of a metallic rubber
coated spherical dish of a radius R > r, Fig. 1. This system is closed in an airtight case. Such
a device is practically maintenance free. Its vertical dimension is relatively very small and can
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be used also in such cases where a pendulum absorber is inapplicable due to lack of vertical
space or difficult maintenance. First papers dealing with the theory and practical aspects of
ball absorbers have been published during the last two decades, see Pirner (1994) and Pirner &
Fischer (2000). The first paper dealing with the problem on the basis of the rational dynamics
has been published some years ago, see Náprstek & Pirner (2002) and Náprstek et al. (2011).
The above referenced papers are probably the first attempts to present basic mathematical model
in 2D together with its numerical evaluation and practical application as far as to the state of the
realization including some results of long-term in situ measurements.

Dynamics of the real ball absorber is more complicated in comparison with the pendulum
one. Its movement can be hardly described in a linear state although for the first view its
behaviour is similar to the pendulum absorber type. A number of problems are still open being
related with movement stability, bifurcations, auto-parametric resonances, see e.g. Nabergoj &
Tondl (1994), Tondl (1997), and at least but not last originating from the spherical dish and ball
surface imperfections. The ball moving inside the spherical dish is very sensitive to the stability
loss of the semi-trivial state representing the movement in a vertical plane. However this type of
the ball motion is requested, as it provides the optimal efficiency of any damper, see e.g. Lee &
Hsu (1994) or Náprstek & Fischer (2009). Therefore any stability loss of the semi-trivial state
deteriorates or invalidates any effect of the device. Due to probability of the stability loss, which
is much higher than of the spherical pendulum, semi-trivial states should be carefully analysed
including a large variety of post-critical processes. Experiences with other auto-parametric
systems prone to the physical stability loss warn about various types of numerical stability loss
during simulations. So this factor should be taken into account since the basic formulation of
the mathematical model, see e.g. Rosenstein et al. (1993) or Ren & Beards (1994). It means
that domains including boundaries of transmission into the post-critical states and backwards
should be subdued to special dealing making possible to define relevant limits.

Figure 1: Outline of the ball vibration absorber; left: basic scheme; right: photo of a full scale
device
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2. Mathematical background

The slipping-less movement of a ball on a surface is a non-holonomic problem. So constraints
relating mutual movement of a ball and a surface include velocity components of their move-
ment. Putting together expression for kinetic and potential energies T , V , Rayleigh function Υ
and external forces Q, the relevant Lagrangian equations should be written in a form as follows:

d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
+
∂V

∂qj
+
∂Υ

∂q̇j
= Qj +

l∑
m=1

λm ·Bmj, j = 1, ..., n (1)

together with non-holonomic constraints:

n∑
j=1

Bmj · q̇j +Bm = 0. m = 1, ..., l. (2)

where qj (j = 1, ..., n) are generalized coordinates. Symbols Bmj and Bm are generally func-
tions of qj . Explicit time can be usually omitted as constraints are considered skleronomous as
a rule if external kinematic excitation is absent and only initial conditions provide energy to the
system. Provided kinematic excitation works, then respective parameters Bm 6= 0 and should
be considered as functions of time. Symbols λm (m = 1, ..., l) are Lagrangian multiplicators
being used to add non-holonomic conditions to the basic Hamiltonian functional. Therefore the
system (1), (2) includes n + l unknowns qj, λm, see for instance popular monographs Arnold
(1978) or Hamel (1978). Constraints Eqs (10) are formulated as linear functions of veloci-
ties q̇j which reveals to be satisfactory concerning problems considered. However non-linear
non-holonomic condition are also applied in some cases, see for instance Hamel (1978).

Let us pay attention to quantities mentioned above. Basically they should be expressed in
the first step following moving coordinates, because in this system can be easily introduced
contact conditions and moreover processes inside the system can be better illustrated using
moving coordinates. The origin of moving coordinates is located in the center of the moving
ball, so that following the concentric sphere with the dish of the diameter % = R − r. Moving
axis 1, 2, 3 follows a tangent of the concentric sphere meridian in a vertical plane ξ, z, axis
2 is always horizontal and axis 3 follows a normal to the tangential plane in contact of both
bodies being directed upwards, see Fig. 2 - left picture: axonometric view and right picture:
some details in vertical plane ξ, z. Components of velocity vector ω in moving coordinates
ω1, ω2, ω3 are positive correspondingly with usual convention. Angles α, γ determine position
of the contact point.

Basic formulae for kinetic and potential energies with respect to moving coordinates read:

T = 1
2
m[v21 + v22 + v23 +

2
5
r2(ω2

1 + ω2
2 + ω2

3)] (a)

V = mg%(1− cosα) (% = R− r) (b)
(3)

Rayleigh function is introduced in a form leading to linear viscous damping in individual mov-
ing coordinates. In particular separately in 1, 2 axes parallel with the tangential plane in contact
point of the ball and the dish quantified by components ω1, ω2 and in axis 3 being normal to the
contact plane with velocity ω3:

Υ =
1

2
δ1(ω

2
1 + ω2

2) +
1

2
δ2ω

2
3 (4)
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Figure 2: Outline of coordinate systems; left: axonometric view; right: plane ξz view - along γ
orientation

This formula indicates that only the rolling resistance and rotation friction proportional to rel-
evant velocity components are respected. No axial damping forces proportional to air flow
velocity are taken into account. Quantification of rolling resistance is specified by δ1 parame-
ter while friction related with rotation around 3 axis is considered to be δ2. Generally it holds
δ1 6= δ2. How far is justified this simple model of energy dissipation will be investigated in a
separate study.

In order to put a relation of velocity vector ω projections into moving coordinates ω1, ω2, ω3

and those into fixed coordinates of the dish ωx, ωy, ωz, we write in compliance with Fig. 2:

ωx = ω1 cosα cos γ − ω2 sin γ + ω3 sinα cos γ (a)
ωy = ω1 cosα sin γ + ω2 cos γ + ω3 sinα sin γ (b)
ωz = − ω1 sinα ω3 cosα (c)

(5)

In order to put a relation of velocity vector ω projections into moving coordinates ω1, ω2, ω3

and velocity components in Euler angles ϕ, θ, ψ, we write:

ω1 = − ϕ̇ sin θ cosψ + θ̇ sinψ (a)

ω2 = ϕ̇ sin θ sinψ + θ̇ cosψ (b)

ω3 = ϕ̇ cos θ + ψ̇ (c)

(6)

where it certainly holds for components of the vector ω: ω2
x + ω2

y + ω2
z = ω2

1 + ω2
2 + ω2

3 .
Considering Fig. 2, following contact relations reveal obvious:

v1 = %α̇, v2 = %γ̇ sinα, v3 = 0, (% = R− r) (7)

where the expression v3 = 0 represents one of the three contact constraints.
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With reference to Eqs (6) and (7) the kinetic energy T , see Eq. (3a), can be formulated as a
function of Euler angles velocities:

T =
1

2
m
[
%2(α̇2 + γ̇2 sin2 α) +

2

5
r2(θ̇2 + ψ̇2 + ϕ̇2 + 2ψ̇ϕ̇ cos θ)

]
(8)

Take a note that evaluating the kinetic energy the square of the absolute value |ω|2 can be
evaluated using either Eqs (5) or Eqs (6) with identical results.

Similarly the Rayleigh function, Eq. (4) can be rewritten as follows:

Υ =
1

2
δ1(θ̇

2 + ϕ̇2 sin2 θ) +
1

2
δ2(ψ̇

2 + ϕ̇2 cos2 θ + 2ϕ̇ψ̇ cos θ) (9)

Using first two expressions of Eqs (7), complete set of the contact constraints can be formulated:

v1 − rω2 = 0,
v2 + rω1 = 0,

v3 = 0
=⇒

rω2 − %α̇ = 0,
rω1 + %γ̇ sinα = 0.

v3 = 0
(10)

Considering Eqs (7), first two constraints Eqs (10) can be rewritten in a form:

r[θ̇ cosψ + ϕ̇ sin θ sinψ]− %α̇ = 0, (a)

r[θ̇ sinψ − ϕ̇ sin θ cosψ] + %γ̇ sinα = 0. (b)
(11)

Therefore we have two non-holonomic constraints Eqs (11a,b) and the matrix B appearing in
Eqs (1) and (2) can be defined:

B =


−%, 0
0, % sinα
r sin θ sinψ, −r sin θ cosψ
r cosψ, r sinψ
0, 0



T

(12)

where a following association with symbols qj in Eq. (2) has been adopted: [q̇1, q̇2, q̇3, q̇4, q̇5] =
[α̇, γ̇, ϕ̇, θ̇, ψ̇].

Let us collect the partial expressions occurring in the Lagrange system Eq. (1) being given
by Eqs (3a), (8), (9), (11) and (12). Consider forcesQj = 0, as the ball is not excited by external
forces. Hence the Lagrange governing differential system can be carried out:

%α̈− %γ̇2 sinα cosα + g sinα = − λ1 (a)

%(γ̈ sinα + 2γ̇α̇ cosα) sinα = λ2 sinα (b)

2
5
r(ϕ̈+ ψ̈ cos θ − ψ̇θ̇ sin θ) +
δ1ϕ̇ sin2 θ + δ2(ϕ̇ cos2 θ + ψ̇ cos θ) = λ1 sin θ sinψ −λ2 sin θ cosψ (c)

2
5
r(θ̈ + ψ̇ϕ̇ sin θ) + δ1θ̇ = λ1 cosψ +λ2 sinψ (d)

ψ̈ + ϕ̈ cos θ − ϕ̇θ̇ sin θ +
δ2(ϕ̇ cos θ + ψ̇) = 0 (e)

(13)
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3. Special cases

It is worthy to compare mathematical models of several simpler cases with the general system
Eqs (15) and (11).

Let us go through the case of the ball moving in a vertical plane. It means: γ = ϕ = ψ = 0
and subsequently also λ2 = 0 and ω3 = 0 as it follows from (14b) and (18). Then Eqs (15a)
and (11a) gain a simplified form:

%α̈ + g sinα = −(2
5
rθ̈ + δ1θ̇) (a)

rθ̇ − %α̇ = 0 (b)
(16)

and so it holds:
α̈ +

5

7

δ1
%
α̇ +

5

7

g

%
sinα = 0 (17)

Equation (17) can be found in various references, e.g. Náprstek & Pirner (2002). It represents
the mathematical pendulum with rotating mass following the contact constraint. Rotation of the
mass increases an effective mass value due to inertia moment of the ball.

The second demonstration follows from the fact that Eq. (13e) is independent from Lagrange
multipliers. With respect to Eq. (6c) it can be rewritten in the form:

(
d

dt
+ δ2)(ψ̇ + ϕ̇ cos θ) =

dω3

dt
+ δ2ω3 = 0 (18)

and hence
ω3 = ωs exp(−δ2t) (19)

where ωs is an arbitrary constant representing an initial velocity introduced independently. For-
mula Eq. (19) represents the first integral of the ball spin around the ω3 axis. The ball rotation
around the axis perpendicular to the dish is independent from remaining components of the
system response. Velocity ω3 is exponentially dropping with time if δ2 > 0, otherwise remains
constant.

As a third example we examine the ball movement excluding the contact of the ball and
dish. So any rotation of the ball is eliminated. Hence Euler angles ϕ, θ, ψ vanish and so they
are λ1 = λ2 = 0. Consequently only homogenized Eqs (13a,b) remain in force. They can be
written as follows:

α̈− γ̇2 sinα cosα + g
%
sinα = 0 (a)

d
dt
(γ̇ sin2 α) = 0 (b)

(20)

comprising governing system of a spherical pendulum with a stiff suspension. For details see
many references, eg. Hamel (1978) or Náprstek & Fischer (2009). For a certain constant value
of γ̇ = ωr the ball moves in a horizontal plane. In such a case α = αr and Eq. (13a) can be
rewritten in a form:

ω2
r cosαr − ω2

0 − 0 =⇒ cosαr =
ω2
0

ω2
r

; ; (ω2
0 =

g

%
) (21)

where should be valid ωr > ω0 on order to keep stability of the regime.
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4. Conclusions

The mathematical model of the ball type vibration absorber has been outlined. Movement of
the heavy ball in a spherical dish has been investigated. With respect to a usual geometry it has
been shown that this device is much more sensitive to the stability loss of the semi-trivial solu-
tion in a vertical plane. Preliminary theoretical and mainly experimental investigation revealed
that the non-linear character of this device is an important factor influencing significantly its dy-
namic properties and practical efficiency. Simplification leading to various types of linearised
models is hardly acceptable. Moreover, it seems that the non-linear character making the form
of resonance curves dependent on the excitation amplitude leads to better efficiency in compar-
ison with linear mechanism. Approximation of strong non-linearity by means of polynomial
approaches widely used in theoretical studies of spherical pendulum response are not possible
as well. At least the first qualitative analyses of solution types, resonance zones, transmissions
between regular and chaotic regimes should respect the strong non-linearity of the system.

The basic Lagrangian analytical theory of non-linear behaviour has been done. The model
has been approached as non-holonomic with five degrees of freedom completed by two non-
trivial reaction components in a form of Lagrange multipliers. Energy dissipation has been
introduced via Rayleigh function considering linear dependence of damping forces on angular
velocity components of the ball in moving coordinates. Several special cases have been inves-
tigated in order to compare the model developed with conventional partial models investigated
earlier. On the other hand some other types of mathematical models are worthy to be com-
posed, as the way using the strict Lagrangian strategy doesn’t proved a high efficiency from
the viewpoint of further investigation, its transparency and physical interpretation possibility.
At least kinematic approach and Appels-Gibbs theory should be investigated before large scale
simulation program will be started.

Laboratory tests of the vibration ball absorber with the dish without and with rubber coating
have demonstrated several aspects of real operation of the damper. With respect to laboratory
tests and long-term in situ measurements can be concluded that the vibration ball absorber is a
simple nearly maintenance free low cost device with very small vertical dimensions. For these
properties it is very convenient for application especially in cases when broad band excitation
of random character prevails and when very limited vertical space is available.
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