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Abstract: The article deals with the numerical modelling of heat and mass transfer in the counter-
flow wet-cooling tower fill. Due to the complexity of this phenomenon the simplified model based
on the set of four ODEs was chosen. Boundary condition for outlet water temperature are based on
experimentally obtained Merkel number correlation. The numerical solution of chosen model was
performed using Runge-Kutta method combined with shooting method. The results are compared
with data available in the literature.
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1. Introduction
In the counterflow wet-cooling tower fill of film type water flows vertically down through the fill as a
liquid film. Air is driven by a tower draft or fan and flows vertically in the opposite direction. Heat and
mass transfer occurs at the water and air interface. Evaporation and convective heat transfer cool the
water, what leads to increase of air humidity and temperature.

2. Mathematical models
Due to the complexity of two phase flow occurring in the wet-cooling tower fill the one dimensional mod-
els of heat and mass transfer are used (e.g. Kröger (2004); Williamson (2008); Klimanek and Białecky
(2009)). These models are based on few assumptions which allow to create simplified one dimensional
models. The first assumption talks about neglecting of the effects of horizontal temperature gradient
in the liquid film, horizontal temperature gradient in air temperature and humidity (e.g. Williamson
(2008)). The second one states that temperatures and humidity are represented only by averaged value
for each vertical position. We are also assuming that at the interface of two phases, there is a thin vapour
film of saturated air at the water temperature (e.g. Williamson (2008)).

This chapter is based on the works of Kröger (2004); Williamson (2008) and mainly on the work
of Klimanek and Białecky (2009). The derivation of every one dimensional model of heat and mass
transfer in the fill is based on balance laws. We have four variables in this problem: ta temperature of
air, tw temperature of water, x specific humidity and ṁw water mass flow rate. Mass balance of the
incremental step of the fill is given by

dṁw + ṁadx = 0, (1)

where ṁa is mass flow rate of dry air. The change in water mass flow rate can be expressed using mass
transfer coefficient αm as

dṁw = αm(x′′(tw)− x)dA, (2)

where x′′(tw) is saturated specific humidity at tw and dA is infinitesimal contact area. The energy
balance can be written in the form

ṁadh1+x = ṁwdhw + hwdṁw, (3)
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where h1+x is enthalpy of air water vapour mixture and hw is enthalpy of water. The change in total
enthalpy can be evaluated using interface parameters similarly like in the case of mass balance

ṁadh1+x = α(tw − ta)dA+ hv(tw)dṁw, (4)

where α is heat transfer coefficient and hv(tw) is enthalpy of water vapour.

2.1. Merkel’s model
The simplest model of heat and mass transfer in the fill is the Merkel’s model which is based on previ-
ous equations and additional assumptions, see e.g. Williamson (2008). The first assumption is about
neglecting the change of water flow rate in energy balance. Using this assumption we can derive from
equation (3) simplified energy equation in the form

dh1+x =
ṁw

ṁa
dhw. (5)

Second assumption states that air exiting the cooling tower fill is saturated and this state can be charac-
terized only by its enthalpy. The last assumption of the Merkel’s model states that Lewis factor Lef = 1.
Lewis factor is equal to the ratio of heat transfer Stanton number St to the mass transfer Stanton number
Stm

Lef =
St

Stm
=

α

cpαm
, (6)

where cp is constant pressure specific heat capacity of moist air

cp = cpa + xcpv . (7)

The effect of the Lewis factor is precisely discussed in the work of Kloppers and Kröger (2005). Using
assumption Lef = 1 we can get from equation (4) after additional modifications

dh1+x

dA
=
αm

ṁa
(h′′1+x(tw)− h1+x). (8)

The driving force for heat and mass transfer has been then reduced to the enthalpy difference between
the water surface and the air stream. Simplified energy equation (5) and equation (8) form the basis of
the Merkel’s model. Equation (5) can by modified to the form

dh1+x

dA
= cpw

ṁw

ṁa

dtw
dA

, (9)

where cpw is specific heat capacity of water. Finally we can combine equation (9) and equation (8) to get

Me =

∫ A

0

αm

ṁw
dA =

∫ twi

two

cpwdtw
(h′′1+x(tw)− h1+x)

, (10)

where Me is non-dimensional Merkel number, two is water temperature at the outlet and twi is water
temperature at the inlet. More precise derivation of the Merkel’s model together with details connected
with numerical calculation of Merkel number and outlet water temperature from known Merkel number
can be found e.g. in references (Kröger (2004); Williamson (2008); Hyhlı́k (2013)).

2.2. Model of Klimanek and Białecky (2009)
To derive the system of ordinary differential equations we have to choose independent variable. The
model of Klimanek and Białecky (2009) is based on the selection of spatial coordinate z as independent
variable contrary to Poppe’s model (e.g. Williamson (2008)) which is based on the choice of water
temperature tw. The interface area can be expressed using variable z as

dA = aqAfrdz, (11)

212



where aq is the transfer area per unit volume and Afr is the cross sectional area of the fill. We can derive
equation for the change of the water mass flow rate from equation (2)

dṁw

dz
= αmaqAfr(x

′′(tw)− x). (12)

To obtain the equation for the change of specific humidity in the fill we can substitute equation (12) into
equation (1)

dx

dz
=
αmaqAfr(x

′′(tw)− x)

ṁa
. (13)

Enthalpy of moist air can be expressed like

h1+x = cpata + x(l0 + cpv ta), (14)

where cpa and cpv are constant pressure specific heat capacities of dry air and water vapour and l0 is
latent heat of vaporisation. Differentiation of equation (21) leads to

dh1+x

dz
= (cpa + xcpv)

dta
dz

+ (l0 + cpv ta)
dx

dz
. (15)

The left hand side of equation (15) can be substituted from equation (4), the last term can be expressed
using (13) and after application of the definition of Lewis factor (6) we can get

dta
dz

=
αmaqAfr

ṁa(cpa(ta) + x cpv(ta))
[Lef (tw − ta) (cpa(ta) +

+ x cpv(ta)) + (cpv(tw)tw − cpv(ta)ta)(x
′′(tw)− x)

]
.

(16)

By using equation (3) after substitution of equation (12) and equation (4) we derive equation for the
change of water temperature

dtw
dz

=
αmaqAfr

ṁwcw(tw)
[Lef (cpa(ta) + x cpv(ta))(tw − ta) +

+ (x′′(tw)− x)(cpv(tw)tw − cpw(tw)tw + l0)
]
.

(17)

The application of the Lewis factor in the previous equations simplified the problem to find experi-
mentally only mass transfer coefficient αm and calculate heat transfer coefficient α using known value
of Lewis factor. The most commonly used formula for the calculation of Lewis factor is Bosnjakovic
formula (Bosnjakovic (1965))

Lef = 0.8662/3
(
x′′(tw) + 0.622

x+ 0.622
− 1

)[
ln
x′′(tw) + 0.622

x+ 0.622

]−1
. (18)

The driving force of evaporation process is (x′′(tw) − x′′(ta))) in the case of supersaturation. The
system of ordinary differential equations has to be changed. The equation for the water mass flow rate is

dṁw

dz
= αmaqAfr(x

′′(tw)− x′′(ta)). (19)

Equation for specific humidity has the form

dx

dz
=
αmaqAfr(x

′′(tw)− x′′(ta))

ṁa
. (20)

The enthalpy of supersaturated air is

h1+x = cpata + x′′(ta)(l0 + cpv ta) + (x− x′′(ta))cw(ta)ta. (21)

213



Equations for the air and water temperature are derived similarly like in the case of under-saturated case.
Lewis factor is calculated using saturation humidity x′′(ta) unlike x in the case of under-saturated air.
Air temperature distribution is calculated using equation

dta
dz

= −
αmaqAfr

ṁa

[
cpa(ta)Lef (ta − tw)− x′′(tw)(l0 + cpv(tw)tw)

+cw(ta)(Lef (ta − tw)(x− x′′(ta)) + ta(x
′′(tw)− x′′(ta)))

+x′′(ta) (l0 + cpv(ta)Lef (ta − tw) + cpv(tw)tw)
]

/

[
cpa(ta) + cw(ta)x+

dx′′(ta)

dta
(l0 + cpv(ta)ta − cw(ta)ta) + x′′(ta)(cpv(ta)− cw(ta))

]
.

(22)

The equation for water distribution is

dtw
dz

=
αmaqAfr

ṁwcw(tw)

[
(l0 + cpv(tw)tw − cw(tw)tw)(x

′′(tw)− x′′(ta))

+ Lef (tw − ta)(cpa(ta) + cw(ta)(x− x′′(ta)) + cpv(ta)x
′′(ta))

]
.

(23)

3. Methodology of numerical simulations
The numerical solution of four ordinary differential equations mentioned in the previous section repre-
sents the boundary value problem. We know air temperature tai and specific humidity xi at air inlet and
water temperature twi and water mass flow rate ṁi on the opposite site of the fill because air and water
flows in the opposite direction. There is additional unknown set of parameters in the system of equations,
i.e. αmaqAfr. These parameters have to be solved by using experimentally obtained characteristics of
the fill. There are at least two possibilities how to solve this problem.

The fist possibility is based on the calculation of Merkel number of the model of Klimanek and
Białecky (2009) using

dMe2
dz

=
αmaqAfr

ṁw
. (24)

We can adjust the set of parameters αmaqAfr until we reach experimentally obtained value of Me2. It
has been shown by Klimanek and Białecky (2009) that the value ofMe2 calculated by using their model
is practically equivalent with Merkel number calculated by using Poppe model. The Merkel number
Me2 has for about few percent higher value than classical Merkel number calculated using Merkel’s
model (10). The second possibility is to calculate the outlet water temperature two using Merkel’s model
and adjust αmaqAfr until we obtain prescribed inlet water temperature twi. This approach is probably
most appropriate because the standard Merkel’s model is almost exclusively used in the cooling tower
industry and the characteristics of the fill are available as a function of Merkel’s model Merkel number
(10). Outlet mass flow rate can be adjusted using simple iteration ṁwo = ṁwi − ṁa(xo − xi) and the
product αmaqAfr can be adjusted using regula falsi method.

4. Results
The first test case was taken from the reference Klimanek and Białecky (2009). The calculation was
performed for a fill of height H = 1.2 m and cross-sectional area Az = 1 m2. The air and water
mass flow rates are equal to ṁa = ṁw = 3.0 kg/s. Inlet water temperature is twi = 37◦C. Air
inlet temperature is tai = 30◦C and specific humidity at air inlet is xi = 2.62 g/kg. This parameters
correspond to hot and very dry atmospheric conditions. Reference Klimanek and Białecky (2009) does
not contain ambient pressure for this particular case but the value of standard atmospheric pressure
p = 101325 Pa looks relevant and is used.

Figures 1 and 2 show results of the numerical simulations and grid sensitivity study of dependence of
outlet parameters is shown in the table 1. There is an intersection in the figure 1 between air temperature
curve and water temperature curve. In the bottom half of the fill air temperature decreases and in the
upper half slightly increases. The decrease of the air temperature in the bottom part of the fill is also
connected with the decrease of saturation humidity in the same part of the fill. The water temperature is
monotonously decreasing due to the cooling process. Water is also cooled in the bottom part of the fill
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Figure 1: The first test case - distribution of temperature and specific humidity compared with data taken
from (Klimanek and Białecky (2009)); solid lines correspond to calculation and circles to data from the
reference; thin lines correspond to calculation on coarse grid and thick lines on finest grid.

Table 1: Grid independence study test for the test case according to Klimanek and Białecky (2009).

50 cells 100 cells 500 cells 1000 cells 5000 cells 10000 cells
two (

◦C) 22.86 22.86 22.86 22.86 22.86 22.86
Me2 (1) 1.871 1.871 1.864 1.863 1.862 1.862
tao (

◦C) 31.02 31.20 31.35 31.36 31.38 31.38
xo (g/kg) 26.20 26.15 26.11 26.11 26.10 26.10
x′′(tao) (g/kg) 28.92 29.24 29.49 29.52 29.54 29.55
ṁwo (kg/s) 2.929 2.929 2.929 2.929 2.929 2.929

because the evaporative cooling dominates over convective heat transfer. The distributions of the density
of heat and mass sources which are depicted on the figure 2 confirms the intensity of evaporative cooling
against the convective heat transfer. The negative value of the density of heat source in the bottom part
of the fill corresponds to the air cooling in this fill part.

The Merkel number according to Klimanek and Białecky (2009) isMe = 1.8613 and is very close to
the values shown in the table 1. From the above mentioned table is visible that the results are practically
the same for the different grid sizes, but from the figure 1 is visible that the solution on coarse grid shows
little differences against the fine grid and the reference solution of Klimanek and Białecky (2009). There
is a good agreement in the distribution of the density of mass source with reference solution of Klimanek
and Białecky (2009), where in the bottom part of the fill is better correspondence with the solution on
coarse grid and in the upper part is better correspondence with solution on fine grid. The calculated
distribution of the convective part of the density of heat source is slightly overestimated against the
reference data as shown in the figure 2.

The second test case was taken from the reference Kloppers (2003). This test case is used also
by Klimanek and Białecky (2009) as the reference solution. The calculation was performed for a fill
of height H = 2.5 m. The air inlet mass flow rate is equal to ṁa = 16672.19 kg/s and water inlet
mass flow rate is ṁw = 12500 kg/s. Inlet water temperature is twi = 40◦C. Air inlet temperature
is tai = 15.45◦C and specific humidity at air inlet is xi = 8.127 g/kg. The atmospheric pressure is
p = 84100 Pa. Outlet water temperature is known from the reference two = 21.41◦C. Poppe Merkel
number is Me = 1.5548 in this case. The air temperature is monotonously increasing in this case unlike
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Figure 2: The first test case - distribution of mass and heat source compared with data taken from
(Klimanek and Białecky (2009)); solid lines correspond to calculation and circles to data from the
reference; thin lines correspond to calculation on coarse grid and thick lines on finest grid.
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Figure 3: Second test case - distribution of temperature and specific humidity compared with data taken
from (Klimanek and Białecky (2009)); solid lines correspond to calculation and circles to data from the
reference.

Table 2: Grid independence study test for the test case according to Kloppers (2003) and comparison
with data of Klimanek and Białecky (2009) and Kloppers (2003).

50 cells 500 cells 5000 cells 10000 cells Kloppers Klimanek
two (

◦C) 21.41 21.41 21.41 21.41 21.41 21.41
Me2 (1) 1.597 1.545 1.538 1.538 1.5548 1.5548
tao (

◦C) 26.77 26.77 26.76 26.76 26.71 26.71
xo (g/kg) 27.34 27.38 27.38 27.39 27.89 27.67
x′′(tao) (g/kg) 27.18 27.17 27.15 27.15 27.18 27.18
ṁwo (kg/s) 12179.7 12179.1 12178.9 12178.9 12170.5 12174.2
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Figure 4: Third case - distribution of temperature and specific humidity; thin lines correspond to calcu-
lation on coarse grid and thick lines on finest grid.

the first test case. Water temperature is decreasing through the whole fill depth similarly like in the first
case. The distributions of temperature and specific humidity is depicted in the figure 3. From the figure
3 is possible to observe supersaturation in the upper part of the fill, it means the air temperature is equal
to adiabatic saturation temperature and specific humidity of air is slightly higher then saturation specific
humidity, i.e. there is an intersection between specific humidity and saturation specific humidity. The
calculated distributions are compared with reference solution of Klimanek and Białecky (2009). From
the point of view of comparison with reference solution, it seams that the supersaturation occurs little
bit earlier in the reference solution of Klimanek and Białecky (2009), but differences are very small.
The table 2 shows grid independence study for this case and the comparison of results with the solution
by Kloppers (2003) and the solution by Klimanek and Białecky (2009). It is possible to recognize
that results are practically mesh independent from the coarse grid, but there is small difference between
obtained solution and solutions from references. Calculated Merkel number is slightly lower, air outlet
temperature is higher, specific humidities are lower and mass flow rate is little bit higher. It is almost
impossible to distinguish the influence of grid from the figure 3 because the differences are almost smaller
then the solid line thickness.

The third test case was inspired by one case used by Zúñiga-González (2005). The calculation was
performed for a fill of height H = 1 m. The air inlet mass flow rate is equal to ṁa = 14333 kg/s and
water inlet mass flow rate is ṁw = 17200 kg/s. Inlet water temperature is twi = 34.9◦C. Air inlet
temperature is tai = 15.7◦C and specific humidity at air inlet is xi = 7.622 g/kg. The atmospheric
pressure is p = 98100 Pa. Outlet water temperature is known from the reference two = 25.7◦C.

The temperature and humidity distributions exhibit similar behaviour like in the previous case. There
are monotone changes in variables in the figure 4 and supersaturation in the upper part of the fill. The
solution is practically grid independent as shown in in the table 3, where the values are mesh independent
practically from the coarse grid. However the mesh independence of the solution is questionable, when
the figure 5 is taken into consideration. The behaviour which is possible to observe in the distribution
of the density of mass source is natural. The solution on coarse grid is slightly different against other
solutions which are almost identical. The problem can be identified on the distribution of the convective
part of heat source. There is a discontinuity on coarse grids in the place where supersaturation starts.
This discontinuity disappear on finer grids. The problem is that there is no distinguishable presence
of numerical errors calculated using method of Dormand and Price (1980) in this case. The relative
error norms of calculated variables exhibit typical behaviour and values similarly like in the previous
test cases. The distribution of relative error norm of air temperature and relative error norm of specific
humidity is shown in the figure 6.
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Table 3: Grid independence study test for the third test case.

50 cells 100 cells 500 cells 1000 cells 5000 cells 10000 cells
two (

◦C) 25.7 25.7 25.7 25.7 25.7 25.7
Me2 (1) 0.874 0.875 0.875 0.875 0.875 0.875
tao (

◦C) 26.12 26.10 26.10 26.10 26.10 26.10
xo (g/kg) 22.29 22.30 22.32 22.32 22.32 22.32
x′′(tao) (g/kg) 22.25 22.22 22.22 22.22 22.22 22.22
ṁwo (kg/s) 16989.7 16989.6 16989.4 16989.4 16989.3 16989.3
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Figure 5: Third case - distribution of mass and heat source.
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Figure 6: Third case - relative error norms.
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5. Conclusions
The results of the numerical solution was discussed for three test cases. The first two test cases was
chosen to compare results with data from references by Klimanek and Białecky (2009) and Kloppers
(2003). Klimanek and Białecky (2009) have mentioned that their results are equivalent with results
obtained using Poppe method by Kloppers (2003). The results presented in this article exhibit slight
differences from the reference solutions. The main difference is presented in the second case where it
seams that supersaturation exhibits little bit later and it leads to differences shown in the table 2. The dif-
ferences are probably caused by different choice of saturated vapour pressure equation in references and
in this article. The difference is also connected with using the more precise equation for the calculation
of specific humidity in this article. The previous two sentences are based on assumption that the work
of Klimanek and Białecky (2009) is based on the same thermodynamics equations as are presented in
the book of Kröger (2004) and this is not possible to recognize from their article. The third test case is
shown because of the problematic presence of the discontinuity on the distribution of convective part of
the density of heat source. It has been shown that the discontinuity is vanishing with the grid refinement.
The presence of discontinuity does not correspond with the increase of error norm. Unfortunatelly, the
article by Klimanek and Białecky (2009) does not mention the distribution of the density of convective
part of heat source for the case where supersaturation occurs. They have mentioned only general fact
that adaptive step size control technique can increase accuracy of the integration with small additional
computational effort.
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