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Summary: In recent years, popularity of unconventional reinforcing of concrete is
growing. Especially fiber reinforcement has very wide usage in high performance
concretes like ”Self Compacting Concrete” (SCC). Designing of structures made
of fiber-reinforced concrete assumes uniform distribution of the fibers through the
structure. Violating this assumption can lead to over-estimated design and poten-
tially to collapse of the structure. Therefore, tools for the prediction of the distri-
bution and orientation of the fibers in the specimen are needed. This paper deals
with developing and implementing suitable tool for prediction of the orientation of
fibers in a fluid based on the knowledge of the velocity field. Statistical approach
to the topic is employed, where orientation of a fiber is described by a probability
distribution of the fiber angle.
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1. Introduction

The modeling of fresh concrete flow is an interesting problem from both theoretical and practi-
cal points of view. Knowledge of fresh concrete behavior, flow abilities and casting capability
has a significant importance, especially in connection with high-performance concrete (HPC) or
self-compacting concrete (SCC). Special types of concrete (like SCC) have advanced properties
and their usage is very wide in many areas. Their application is essential in highly reinforced
structures where it is very hard to fill in all the voids as vibrating is not possible since there
is limited space between the steel bars. For further information, see for example Ferraris et
al. (2001). In HPC concretes, unconvetional types of reinforcement is of growing popularity.
Especially fiber reinforcement has a very wide usage in SCC. It plays a fundamental role in
reducing shrinkage effects in structures, such as cracking. The designing of fiber reinforced
concrete assumes more or less uniform distribution of fibers, or at least fiber orientation in the
direction of the principal stresses. Therefore, tools for prediction of the distribution and the
orientation of the fibers in the specimen are needed.

This paper presents a probabilistic based approach for predicting fiber orientation induced
by fluid (SCC) flow. In the modeling of flow problems using standard Finite Element Method
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(FEM) fluid is usually considered as a single homogeneous continuous medium. In Eulerian
description the motion is connected to actual configuration and therefore convective term is
present and the Navier-Stokes equations govern the motion of the fluid. In this case, computa-
tion can be done on a fixed grid and no re-meshing is needed. On the other hand, one needs to
use some stabilization due to convective terms and also Ladyzenskaya-Babuska-Brezzi (LBB)
condition has to be satisfied, see Donea & Huerta (2003) for further information. The mod-
eling of fresh concrete flow in the context of Eulerian formulation is typically done using so
called immiscible fluids concept (as a free surface flow), first proposed in Belytschko & Chessa
(2003).

The orientation dependent behaviour of fibers immersed in a viscous fluid is an important
problem in many areas. When a material containing fibers is formed, its flow changes the ori-
entation of the fibers. It is obvious that the fiber orientation in the specimen is the key feature of
its mechanical behaviour. Fiber reinforced material is stronger and stiffer in the direction of the
prevailing orientation and weaker and more complient in the direction of the minor orientation.
As there are theories to predict mechanical properties of the reinforced material once the orien-
tation state is known, the prediction of flow-induced fiber orientation remains the challenging
task. One way to model the orientation of the fiber is to use the probabilistic approach. It is
based on the assumption that the orientation state of the fiber can be completely described by
the orientation probability distribution function. Then, the evolution of the probability distribu-
tion evolves due to Fokker-Planck equation, see Olson et al. (2004), Advani & Tucker (1987),
Folgar &Tucker (1984).

The paper is organized as follows. In Section 2. governing equations describing the fluid flow
are described. Strong and weak formulation of the problem are presented. Then, discretization
using Finite Element Method is demonstrated. In Section 3., a probabilistic approach to fiber
orientation tracking in fluid flow is demonstrated. Basic concept and numerical scheme is ex-
plained. In the last section, few numerical results are shown.

2. Description of the flow

As was mentioned before, problem under consideration is described by Navier-Stokes equa-
tions. In this work, only 2D flow is considered. LetΩ ⊂ R2 be open set with boundary∂Ω.
Boundary∂Ω is decomposed to two mutually disjoint partsΓD andΓN , on which we prescribe
Dirichlet boundary condition and Neumann boundary condition. The whole problem can be
formulated as follows, see Tezduyar (1991)

ρ

(
∂v

∂t
+ (v ·∇) v − b

)

−∇ · σ = 0 inΩ× (0, T)

∇ · v = 0 in Ω× (0, T)

v = g onΓD×(0, T)

σ · n = h onΓN× (0, T) (1)

v = v0 in Ω, t = 0.

Unknown fields are velocityu and pressurep. Densityρ, body forcesb and functionsg and
h are prescribed. Outer normal vector to the boundary is denoted asn. Standard decomposition
of stress tensorσ into deviatoric stressτ and hydrostatic pressurep is used. Strain rate tensor
is defined as a symmetric part of velocity gradient:
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D =
1

2

(

∇u+ (∇u)T
)

. (2)

Constitutive law can be considered as one-parameter (viscosityµ) Newtonian fluid. How-
ever, fresh concrete flow has to be described by at least two parameters. The first one is yield
stressτ0 which introduces minimal stress necessary for concrete flow. The second parameter,
plastic viscosityµpl, governs the main flow. Suitable choice is then Bingham model, see Pa-
panastasiou (1987). Despite its simplicity, practical simulations have proved, that it is a suitable
choice for describing fresh concrete behavior. Both models newtonian and Bingham fluids are
described by following equations

τ = µD (3)






τ =

[

µpl +
τ0√
Je

2

]

D ; |J2| ≤ τ0,

D = 0 ; |J2| ≥ τ0,
(4)

whereJe
2

is the second invariant of deviatoric strain tensor andJ2 is second invariant of devia-
toric stress tensor, which is defined as

J2 =
1

2
τ : τ . (5)

The second invariant of strain rate tensor is defined similarly.

2.1. Numerical scheme
Emloying the FEM and provided that suitable finite-dimensional subspacesS

h ⊂ S, Vh ⊂ V

andQh ⊂ Q are defined, the discretized problem states, see Osawa & Tezduyar (2000): find
vh ∈ S

h andph ∈ Qh such that∀wh ∈ Vh, ∀qh ∈ Qh:
∫

Ω

ρwh∂v
h

∂t
dx+

∫

Ω

ρwh · (vh ·∇vh) dx+

∫

Ω

∇wh : τ (vh) dx−
∫

Ω

wh · ph dx

−
∫

Ω

wh · b dx−
∫

∂Ω

wh · (τ − pδ) · nds+

∫

Ω

qh∇ · vh dx (6)

+
∑

el

[∫

Ωe

τSUPG(v
h ·∇wh) ·

(

ρ
∂vh

∂t
+ ρwh · (vh ·∇vh)−∇ · τ(vh) +∇ph − b

)

dx

]

+
∑

el

[∫

Ωe

τPSPG
1

ρ
∇qh ·

(

ρ
∂vh

∂t
+ ρwh · (vh ·∇vh)−∇ · τ(vh) +∇ph − b

)

dx

]

Terms on the first two lines follow from the standard Galerkin discretization, the third line rep-
resents Streamline Upwind/Petrov-Galekin (SUPG) stabilization term due to convection effects
and the fourth line provides Pressure Stabilizing/Petrov-Galekin (PSPG) stabilization for ele-
ments not satisfying LBB condition. Note that PSPG terms are localized to the positions where
zero sub-matrix appears in the standard Galerkin formulation, providing unique solvability of
the matrix problem. The choice of stabilization parametersτSUPG, τPSPG is a non-trivial task,
in general, and can be found in Osawa & Tezduyar (2000).

Semi-disretized formulation (see eq. (6)) represents set of time ordinary differential equa-
tions, which can be discretized using generalized mid-point rule. Since the solution procedure
is not in the centre of attention of this paper, it will be skipped. Interested reader can find the
solution procedure in Tezduyar (1991).
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Fig. 1: Description of the fiber

3. Description of the fibers

The fibers are assumed to rigid cylinders, uniform in length and diameter. Orientation of
a single fiber can be therefore described by angles(θ, φ) defined in Fig. 1. Also, a spatially
uniform concentration of fibers is assumed. Considering the orientation of a fiber as a random
variable, the orientation state at a point in space can be then described by a probability distribu-
tion functionΨ(θ, φ), see for example Advani & Tucker (1987), Folgar &Tucker (1984), Olson
et al. (2004). The probability that orientation angles of the fiber lies in the intervals(θ1, θ1+ dθ)
and(φ1, φ1 + dφ) is given by

P (θ1 ≤ θ ≤ θ1 + dθ, φ1 ≤ φ ≤ φ1 + dφ) = Ψ(θ1, φ1)sin(θ1) dθ dφ. (7)

Since the orientation angle(θ, φ) cannot be distinguished from the angle(π − θ, φ + π),
probability distribution function has to be periodic

Ψ(θ, φ) = Ψ(π − θ, φ+ π). (8)

The second property is normality ofΨ. Mathematically speaking it is a necessary condition of
any probability distribution function. Physically it can be seen from the fact, that each fiber has
some orientation. Normality condition can be expressed as

∮

S1

Ψ(θ, φ) dp =

∫ π

0

∫
2π

0

Ψ(θ, φ)sin(θ) dθ dφ = 1. (9)

The first integral in (9) is taken over the unit sphere, representing all possible angles of a single
fiber. The motion of a single fiber can be described using a unit vectorp directed along the fiber
axis. The fiber motion is determined by Jeffrey’s equation, see Aidun & Parsheh (2006)

ṗ = W · p+
1

2
(D · p− (D : p⊗ p)p) , (10)

whereṗ = dp/ dt, W andD are antisymmetric and symmetric parts of velocity gradient
respectively. Using subscript notation, Jeffrey’s equation can be rewritten as

ṗi = Wijpj +
1

2
(Dijpj −Dklpkplpi) . (11)
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The probability distribution function can be considered as a convected quantity and therefore it
has to satisfy continuity equation, see Aidun & Parsheh (2006), which can be expressed as

DΨ

Dt
+∇r · (ṗΨ) = 0, (12)

whereD/Dt is a total or material derivative and∇r is gradient operator on the unit sphere,
which can be expressed as

∇r = θ̂
∂

∂θ
+

1

sin(θ)
φ̂

∂

∂φ
, (13)

whereφ̂ and θ̂ are unit vectors corresponding to spherical coordinatesφ andθ respectively,
defined as

φ̂ =





−sin φ
cos φ
0



 , θ̂ =





cos φ cos θ
sin φ cos θ
−sin θ



 . (14)

In turbulent flow, analogous equation for the evolution of the probability distribution function
can be formulated

DΨ

Dt
+∇r · (Dr · ∇rΨ− ṗΨ) = 0. (15)

Here,Dr is rotational diffusion tensor, which can be reduced to scalar quantity when assump-
tion of isotropy is made, see Aidun & Parsheh (2006) for details. Folgar &Tucker (1984) have
proposed following form of rotational diffusion tensor in case of concentrated suspension

Dr = CI γ̇1, (16)

whereγ̇ is a scalar magnitude of a strain rate tensor andCI is a phenomenological coefficient
modeling the infuence of interaction between fibers and1 is a unit second order tensor. Using
above defined unit vectorŝφ andθ̂, one can expresṡp in more compact form

ṗ = φ̇ sin θφ̂+ θ̇θ̂. (17)

Once proper expressions ofφ̇ and θ̇ are found, Fokker-Planck type of equation for evolution
of distribution function can be obtained by combining equations (15) and (17) Olson et al.
proposed following derivation oḟφ andθ̇, see Olson et al. (2004)

φ̇ =
12

L3

f sin θ

∫ Lf/2

−Lf/2

lφ̂ · u(y + lp) dl, (18)

θ̇ =
12

L3

f

∫ Lf/2

−Lf/2

lθ̂ · u(y + lp) dl, (19)

whereu represents the velocity field. When the flow is not highly turbulent and the length of
fiber is small compared to the specimen, linearization of equations (18) and (19) can be done
using Taylor series expansion

u(y + lp) ≈ u(y) +
∂u(y)

∂y
lp. (20)
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Then, equations (18) and (19) can be simplified into

φ̇ =
φ̂

sin θ

(
∂u(y)

∂y
p

)

(21)

and

θ̇ = θ̂

(
∂u(y)

∂y
p

)

. (22)

In this paper, we restrict ourself only to flows in xy-plane, which means that orientation angleθ
is always equal toπ/2. Therefore, distribution of probability function can be simplified in order
to enforce this apriori knowledge as follows

Ψ(φ, θ) = δ(θ − π

2
)Ψφ(φ), (23)

whereδ is the Dirac delta function andΨφ is the planar distribution function. In this case,
expression foṙφ can be simplified to

φ̇ =
1

2

(
∂v

∂y
− ∂u

∂x

)

sin(2φ)− ∂u

∂y
sin2(φ) +

∂v

∂x
cos2(φ). (24)

In equation (24), velocity field is written in terms of its components, namelyu = (u, v). Em-
ploying equation (24) and taking into account the 2D assumption, above mentioned correspond-
ing Fokker-Planck equation governing the evolution of the probability distribution function has
the following form

DΨφ

Dt
= Dr

∂2Ψφ

∂φ2
+

[(
∂u

∂y
+

∂v

∂x

)

sin(2φ) +

(
∂u

∂x
− ∂v

∂y

)

cos(2φ)

]

Ψφ (25)

+

[
1

2

(
∂u

∂x
− ∂v

∂y

)

sin(2φ) +
∂u

∂y
sin2 φ− ∂v

∂x
cos2 φ

]
∂Ψφ

∂φ
,

which holds forφ ∈ (0, 2π) and time interval of interest. Due to the periodicity ofΨ, see
equation (8), periodic boundary condition has to be specified at the boundary points

Ψφ(0) = Ψφ(2π). (26)

At the begining of the flow (or more precisely when the fiber is added into the flow), every
orientation has the same probability and therefore uniform distribution of probability is specified
as an initial condition

Ψφ =
1

2π
, t = 0. (27)

Note, that equation (25) can be formally rewritten in the form

DΨφ

Dt
= Dr

∂2Ψφ

∂φ2
+ C(u, φ)

∂Ψφ

∂φ
+R(u, φ)Ψφ, (28)

which is in fact nonstationary convection-diffusion-reaction equation. In the literature, one
can find different approaches to solving the evolution of probability distribution function. It
is possible to expandΨ into a series of orthogonal functions using moments ofp. Instead of
solving evolution equation for distribution of probability, the evolution equations for moments
are solved. The probability distribution function is then reconstructed from these moments,
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see Advani & Tucker (1987). Altough this can be more effective and numerically ”cheaper”
approach, it has its own difficulties. One of the most significant is the so called closure prob-
lem. In real calculations, the infinite series of statistical moments has to be ended somewhere.
The problem is that the evolution equation for any of these moments always contains a next
higher moment, which has to be approximated. There are many papers dealing with the clo-
sure problem, see for example Parsheh et al. (2006). However, in our case, there is only one
random variable, therefore theΨ is function of one variable only and then it is easy to solve
corresponding Fokker-Planck equation.

3.1. Numerical scheme
In this paper, we are solving evolution equation for the distribution of probability. Emloying
(FEM), semi-discrete formulation of equation (25) can be obtained. Then it is integrated in time
using generalized mid-point rule. As usual in FEM, we start from a weak formulation of (25).
Again, assume that proper function spaces and their finite element subspaces are well defined,
semi-discretized formulation can be stated as follows: findΨh ∈ Sh such that∀wh ∈ Vh

∫
2π

0

wh
DΨh

φ

Dt
dφ+

∫
2π

0

Dr
∂wh

∂φ

∂Ψh
φ

∂φ
dφ

−
∫

2π

0

[
1

2

(
∂u

∂x
− ∂v

∂y

)

sin(2φ) +
∂u

∂y
sin2 φ− ∂v

∂x
cos2 φ

]

wh
∂Ψh

φ

∂φ
dφ (29)

−
∫

2π

0

[(
∂u

∂y
+

∂v

∂x

)

sin(2φ) +

(
∂u

∂x
− ∂v

∂y

)

cos(2φ)

]

whΨh
φ dφ = 0,

where the mass and diffusive terms are on the first line, convective term in the second line and
reactive term on the third line. Note that in the mass term, total time derivative is employed and
so the term can be rewrtitten as

∫
2π

0

wh
DΨh

φ

Dt
dφ =

∫
2π

0

wh∂Ψφ

∂t
+ u

∂Ψh
φ

∂x
+ v

∂Ψh
φ

∂y
dφ. (30)

Using the chain rule, we arrive at following expression

∫
2π

0

wh∂Ψφ

∂t
− u sin φ

∂Ψh
φ

∂φ
+ v cos φ

∂Ψh
φ

∂φ
dφ, (31)

from which it can be seen that total time derivative term can be divided into a mass term and
a contribution into a convective term. For the trial and test function, linear approximation was
chosen. We can express the set of equations (29) in the matrix form as:

Mṙψ + (K −C −R) rψ = 0. (32)

In the above equation (32),M , K, C andR represents the mass, diffusion, convective and
reaction terms. The nodal vector of unkown values and its time derivatives are denoted asrψ
and ṙψ, respectively. The set of equations (32) is discretized in time domain employing the
generalized mid-point scheme as

M
r
n+1

ψ − rn
ψ

∆t
=



−K +C +R
︸ ︷︷ ︸

F





(

αrn+1

ψ + (1− α)rn
ψ

)

. (33)
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The value of the parameterα determines whether the scheme (33) is explicit or implicit. We
chooseα = 0.5, which makes the scheme implicit and2nd order accurate. For the sake of
brevity, we mark the sum of diffusion, convection and reaction terms asF . After some re-
arrangement, (33) can be rewritten as

(M − α∆tF ) rn+1

ψ = (M + (1− α)∆tF ) rn
ψ
, (34)

or in more compact form
K̃r

n+1

ψ = F̃ (rn
ψ
). (35)

Because of the boundary and initial conditions (see eq. (26) and (27)), following conditions for
the vector of unknowns must hold:

r0

ψ
=

1

2π
δ (36)

rn
ψ
(1) = rn

ψ
(nnodes), (37)

whereδ is a vector with unit entries only and has the same length asrψ. It turned out that it is
sufficient to divide the interval(0, 2π) into 100 elements and therefore relation (33) is relatively
easy and cheap problem to solve. Solution of (35) can be then obtained using direct solver in
every time step.

4. Numerical examples

In this section, a simple benchmark test will be presented. For this purpose, a simple shear
flow problem was chosen. At first, the flow inducing the orientation of the fibers is prescribed
directly through the fixed value of a strain rate tensorD and final distribution of probability is
computed. Then, the same flow problem is modeled using the FEM on the rectangular domain,
where uniform velocity in the x direction is prescribed on the left side, a full friction is applied
at the bottom and the top and right surfaces are free. The results are compared to the first (ideal)
case, where the strain rate tensor is prescribed.

4.1. Exact simple shear flow
First of all, it has to be noted that by ”exact” we mean exact expression for strain rate tensor. In
the simple shear flow, the velocity field has formu = (ay, 0) and therefore the strain rate tensor
D has the following form

D =

(
0 a
a 0

)

. (38)

Depending on the value ofCI (coefficient describing the level of interaction between fibers),
different distribution of probability can be obtained. In Fig. 2, the distribution of probability
is plotted for interaction coefficientCI = 0.01, CI = 0.1 andCI = 1.0, respectively. It can
be clearly seen that massive interaction between fibers forCI = 1.0 causes bigger probability
of redistribution of orientation fiber angle. This can be explained by the random character of
interactions, which does not allow any direction to be preferred. From the mathematical point
of view, with bigger value ofCI , the bigger influence of diffusive term consequently causes
bigger redistribution ofΨφ. In case of a very small interactionCI = 0.01, fibers are highly
oriented in one direction with the highest probability,φ ≈ 22.8◦, as one could expect in the
simple shear. It can be also seen, that probability distribution function is periodic, because of
the fact that two fibers with orientation anglesα and α + π/2 cannot be distinguished.
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Fig. 2: Distribution of the probability for different interaction coefficients

4.2. Simulated simple shear flow
As was mentioned above, the simple shear flow was modeled on a rectangular domain, see Fig.
3. Prescribed boundary conditions are full friction at the bottom, uniform velocity on the left
and free (do nothing) elsewhere. In Figs. 4, 5, the results are shown. Fibers are generated
randomly along prescribed line at given time steps. The fiber is represented by its position,
which is updated every time step as the flow evolves. The orientation state for each fiber is
visualized using polar coordinates, corresponding probability is marked out in direction of each
angle. In the agreement with results presented in Fig. 2, in case of low level interaction, the
fibers are highly oriented (this is correct for the fibers near the bottom boundary, where the
character of the flow is closer to the simple shear) and the angle is approximately the same as
before,φ ≈ 22.8◦. In the case of a high level of interaction, representation of orientation state
looks more like an elipse, as each angle has bigger probability of realisation.

Fig. 3: Computational mesh.
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Fig. 4: Simple shear flow - distribution of probability for individual fiber positions, C=1.0.

Fig. 5: Simple shear flow - distribution of probability for individual fiber positions, C = 0.01.

5. Conclusion

In this paper, we have shown the application of the probabilistic approach for the description of
a fiber orientation in fresh concrete flow simulations. The numerical model is based on solving
Fokker-Planck equation for the distribution of probability of fiber orientation using the FEM. It
was shown that employed approach is useful and computationally manageable. The presented
results correspond to empiric experiences.

However, 2D model cannot be very realistic, since all real applications are three dimensional.
Future work will be focused on the extension of this model into 3D, using experiences from the
presented work.
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