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Summary: This contribution introduces a new formulation of a classical Branch
and Bound method to find global optima of truss sizing optimization problems
enhanced with cables. Our paper shows that the problem is solvable as a binary
version of the mixed integer programming problem. The text presents the derivation
and the implementation details.
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1. Introduction

Many optimization algorithms based on different principles have been developed in recent
years. To compare them, different testing functions and structures, called benchmarks2, are
frequently used. Nevertheless, most of the authors commonly uses the same version to com-
pare their optimization methods. For comparing them, it is good to know properties of these
benchmarks. One of them are global optima.

It is very useful to know global optima to determine how the tested algorithm acts like. If the
optimization method gets closer to the global optimum in a short time and do not terminated
in the local optimum is consider as a sign of quality. In our previous contribution (Pospı́šilová,
2013), the derivation of the search for global optima for classical sizing optimization bench-
marks has been presented. These benchmarks share same qualities such as the objective is
a linear combination of variables and thus it is easy to solve, constraints are non-linear and
the searched space is discrete. This contribution then presents a next steps that are needed to
solve the global optima of the Cable-Truss Structures. These are characterized by sets (groups)
of cross-sectional areas that differ in length, i.e. usually one group for bars and one for ca-
bles, respectively. Moreover, the different behavior of cables in compression must be taken into
account.

For getting global optimum in a real time on types of benchmarks defined above, it is possible
to use few methodologies. An Exhaustive Search (also called Enumeration or Brutal Force,
respectively) is one of them. It is possible to use it just for very small examples thus it is

1 Ing. Adéla Pospıšilová, doc. Ing. Matěj Lepš, Ph.D., Faculty of Civil Engineering, Czech Technical University
in Prague, Thákurova 7, 166 29 Prague 6, tel. +420 224 355 417, e-mail adela.pospisilova@fsv.cvut.cz
2 For structural optimization, there are about ten truss-like structures that are used in slightly modified versions.
These modifications are not comparable to each others which is the common mistake of some authors. For more
details of these modifications of some very often used benchmarks see Pospı́šilová (2011).
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necessary to evaluate objective and constraints for every combination of variables. The problem
grows exponentially with increasing variables or conditions. Other approaches are Branch and
Bound Methods (Arora, 2002), Branch and Cut Methods (Mitchell, 2002) or Methods Based
on Branch and Bound Principles combined with the Enumeration (Pospı́šilová, 2012). The last
mentioned procedure is based on the idea, that the optimization process systematically goes
through the searched space, that is delimited by two known bounds in advance. The lower
bound is invariable and it is obtained by continuous optimization (e.g. Active Set Method). The
upper bound is obtained by any heuristic or metaheuristic method. The best-so-far solution is
used to reduce the searched space from above by updating the upper bound. The algorithm ends
after searching the whole space in between. The advantage of this method is that the global
optimum is found for every typecast benchmark. The disadvantage is that the methodology is
time consuming even if it is parallelized. In this paper, our attention is dedicated to the classical
Branch and Bound Method, that could be less time consuming than the mentioned approach.
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Figure 1: 5-bar truss structure

2. Size optimization

Sizing optimization (Bendsøe, 1995) is one type of structural optimization that deals with truss-
like structures. These structures are defined by topology, material, loading, supports, and a set of
cross-sections or, alternatively, minimum and maximum cross-sectional areas of the individual
rods. The objective function is the weight of a structure and constraints are maximal stresses and
maximal displacements, respectively. The goal is to find cross-sections for the given structure
that satisfy prescribed constraints and have the minimal weight. The selection of cross-sections
from the given database then defines a discrete optimization problem, whereas variables chosen
from given limits leads to a continuous case. The continuous optimization problem can be
efficiently solved by mathematical programming methods like gradient-based methods. These
methods do not guarantee finding the global optimum for non-convex problems however, they
often terminated in a critical point. When using discrete variables, no such option is available.
Thus our attention is given to the discrete case.

3. Relaxation of the Problem

The truss structure is defined in sense of Fig. 1. The topology of the structure is unchanging and
the goal is to find minimal weight with the best combination of cross-section areas. Prescribed
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constraints are minimal and maximal possible values of displacements as well as stresses.
An optimization problem is possible to be defined as (Rasmussen, 2008)

min
x∈Bna·nr,u∈Rnd

ρ

nr∑
j=1

`j

na∑
i=1

aixi,j (weight) (1)

subject to K(x)u = f (force equilibrium), (2)
na∑
i=1

xi,j = 1 ∀j (one area per bar) (3)

umin ≤ u ≤ umax (displacement constraint) (4)
xi,j ∈ 0, 1 ∀(i, j). (5)

Notation (1) describes minimization of the structure weight where ρ is the density of the
material, `j is the length of the j th rod, ai is the ith cross-sectional area and xi,j is the binary
design variable that is arranged in a column vector. The variable i assumes values between
1 and na where na is a number of areas in the given set. The variable j is defined with values
1 to nr where nr is a number of rods of the structure. xi,j is 1 whether area ai is assigned to j th

rod. In other case, xi,j is 0. Equation (2) is force equilibrium defined with the stiffness matrix
K(x) with size nd × nd, the displacement vector u with length nd and the loading vector f
with length nd. nd is a number of degrees of freedom. Equation (3) ensures that only one area
is assigned to each rod. Inequality (4) is the displacement constraint condition ensuring that
values of variables stays in a feasible region. Formula (5) guarantees that xi,j can gained 0 and
1 values.

An optimization problem described above is called mixed-integer non-linear problem. Be-
cause of the force equilibrium (2) which is non-convex, there is no guarantee that optimum is
possible to find. This nonlinear problem can be transformed into pure linear one (Rasmussen,
2008):

min
x∈Bna·nr,
u∈Rnd,
s∈Rna·nr

ρ
nr∑
j=1

`j

na∑
i=1

aixi,j (weight) (6)

s.t. Bs = f (force equilibrium), (7)
xi,jaiσ

min ≤ si,j ≤ xi,jaiσ
max ∀(i, j) (stress constraints), (8)

Ejai
`j

bT
j u− si,j ≥ (1− xi,j)cmin

i,j ∀(i, j) (compatibility), (9)

Ejai
`j

bT
j u− si,j ≤ (1− xi,j)cmax

i,j ∀(i, j) (compatibility), (10)

na∑
i=1

xi,j = 1 ∀j (one area per bar), (11)

umin ≤ u ≤ umax (displacement constraints), (12)
xi,j ∈ {0, 1} ∀(i, j). (13)

Geometric matrix B containts vectors bj which are the direction cosine vectors, s are internal
normal forces, f is loading vector. σmin and σmax are minimal and maximal permitted values of
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stresses, Ej is Young modulus, si,j are all possible internal normal forces for every combination
of cross-sectional area on all rods, u is the displacement vector, cmin

ij and cmax
i,j are minimal and

maximal possible internal forces, respectively.
For implementation purposes, the notation is possible to be rewritten to

min
x∈Bna·nr,
u∈Rnd,
s∈Rna·nr

ρ
(

(`⊗ 1[na])
T � (1[nr] ⊗ a)T

)
x (14)

s.t. Bs = f , (15)
σmin diag

(
1[nr] ⊗ a

)
x ≤ s ≤ σmax diag

(
1[nr] ⊗ a

)
x, (16)((

ξ ⊗ a⊗ 1T
[nd]

)
�BT

)
u− s ≥

(
1[na·nr] − x

)
�Cmin, (17)((

ξ ⊗ a⊗ 1T
[nd]

)
�BT

)
u− s ≤

(
1[na·nr] − x

)
�Cmax, (18)

I[nr] ⊗ 1[na] · x = 1[nr], (19)
x ∈ {0, 1}. (20)

Vector ` contains all lengths of rods, all cross-sections are arranged in a vector a, vector x
contains all variables xi,j , ξ is a specific stiffness, s is a vector of internal normal forces, Cmin

and Cmin are matrices of maximal and minimal possible internal forces respectively, I is an
identity matrix, 1 is a vector or a matrix filled with 1. The specific stiffness ratio ξ is a product
of the Young’s modulus and a vector of multiplicative inverse elements to length vector `, i.e.
ξ = E · ¯̀, where ¯̀ · 1

`
= 1. For definition of the � and ⊗ operators, inspect Appendix A. For

more details on the derivation, inspect again (Pospı́šilová, 2013).

4. Trusses with groups

Several benchmarks does not use all cross-sectional areas as variables. Instead of it, rods are
divided into groups and these groups are optimization variables. All binary variables x[ng·na]
has to be increased with the extended localization matrix G[nr·na×ng·na] as G · x that gives
a vector with the size [nr ·na]. ng is a number of groups. The extended localization matrix G is
Kronecker product of localization matrix Q[nr×ng] and identity matrix I[na] (G = Q⊗I[na]). The
localization matrix Q is a full matrix of ones and zeros. Element qp,r is equal to one whether
the corresponding bar on position p is assigned into the corresponding group on possition r, i.e.
q3,2 = 1 as the second group is assigned to the third bar, the rest of the third row in the Q matrix
is filled with zeros due to the condition that only one area has to be assigned per bar.
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The resulting system then reads

min
x∈Bna·nr,
u∈Rnd,
s∈Rna·nr

ρ
(

(`⊗ 1[na])
T � (1[nr] ⊗ a)T

)
Gx (21)

s.t. Bs = f , (22)
σmin diag

(
1[nr] ⊗ a

)
Gx ≤ s ≤ σmax diag

(
1[nr] ⊗ a

)
Gx, (23)((

ξ ⊗ a⊗ 1T
[nd]

)
�BT

)
u− s ≥

(
1[na·nr] −Gx

)
�Cmin, (24)((

ξ ⊗ a⊗ 1T
[nd]

)
�BT

)
u− s ≤

(
1[na·nr] −Gx

)
�Cmax, (25)

I[nr] ⊗ 1[na] ·Gx = 1[nr], (26)
x ∈ {0, 1}. (27)

Nevertheless, there can be different sets of cross-sectional areas set up for different rods. Let
us assume five bar truss example in Fig.1 with two different cross-section sets. Cross-sections
from the first set â can be assigned to the vertical and chords (namely bars 1, 4, and 5) and cross-
sections from the second set ˆ̂a to diagonals (namely bars 2 and 3). Sets can be also created with
a different number of cross-sections, e.g. â = (a1, a2)

T and ˆ̂a = (a3, a4, a5)
T. However, that

kinds of sets with various sizes are uncomfortable to maintain thus the smaller sets are increased
to the size of the biggest set with sections that are as large as the solution that is not going to
be used for branching the problem. This virtual section is denoted by ā, thus both sets look like
â = (a1, a2, ā3)

T and ˆ̂a = (a4, a5, a6)
T. To assign proper sections to proper rods, the matrix V

is introduced. A number of rows of V is similar to number of rods nr and a number of columns
is the same as a number of sets ns. Every column corresponds to a different set. Element vj,q
is equal to one whether the cross-section on the j th rod is chosen from the qth set otherwise it is
equal to zero. For the sake of clarity, note that now na is as big as the number of sections in the
biggest set.

To evaluate the objective function that has to be minimized, the equation (14) is redefined as

min
x∈Bna·nr,
u∈Rnd,
s∈Rna·nr

ρ
(

(`⊗ 1[na])
T � (V ⊗ I[na] · a)T

)
x (28)

where the vector a contains both sets of cross-sections. For the five bar truss problem with
two sets, a is composed as (â, ˆ̂a). Stress constraints from equation (16) and compatibility
equations (17) and (18) are redefined in the same meaning. The resulting system then leads to

σmin diag
(
V ⊗ I[na] · a

)
x ≤ s ≤ σmax diag

(
V ⊗ I[na] · a

)
x, (29)((

ξ ⊗ 1[na] � (V ⊗ I[na] · a)⊗ 1T
[nd]

)
�BT

)
u− s ≥

(
1[na·nr] − x

)
�Cmin, (30)((

ξ ⊗ 1[na] � (V ⊗ I[na] · a)⊗ 1T
[nd]

)
�BT

)
u− s ≤

(
1[na·nr] − x

)
�Cmax. (31)

Constraint equalities (15) and (19) and definition of binary decision variable (20) remain
unchanged. Additional constraints are defined as

diag
(
V ⊗ I[na] · z

)
· x = 0[na×nr], (32)

diag
(
V ⊗ I[na] · z

)
· s = 0[na×nr], (33)

457



where vector z holds information about the added virtual cross-section. It is composed by
two vectors ẑ and ˆ̂z (z = (ẑ, ˆ̂z)) that are connected with vectors â and ˆ̂a. Both vectors ẑ and
ˆ̂z has zero on the position where the original sets â and ˆ̂a have real cross-section and one on
the position of the virtual section ā. Those additional constraints satisfy that the virtual cross-
sections are never assigned to the solution.

The same problem is possible to solve on benchmarks with bars assigned into groups as is
already mentioned in Section 4. Cross-sectional areas are then chosen from different sets. It is
necessary to realize that multiplication from the right hand side by the matrix G decreases a bar
expression into a group expression, i.e. Ψ · G in which matrix Ψ is any matrix with proper
size. From the other point of view, the extension from groups into rods is made through the
multiplication from the left by the matrix G, i.e. G · φ in which vector φ has a size ng · na.
Thus the prior approach with different sets is applicable to equations (21) to (27).

min
x∈Bna·nr,
u∈Rnd,
s∈Rna·nr

ρ
(

(`⊗ 1[na])
T � (V ⊗ I[na]a)T

)
Gx (34)

s.t. Bs = f , (35)

σmin diag
(
V ⊗ I[na]a

)
Gx ≤ s ≤ σmax diag

(
V ⊗ I[na]a

)
Gx, (36)((

ξ ⊗ 1[na] � (V ⊗ I[na]a)⊗ 1T
[nd]

)
�BT

)
u− s ≥

(
1[na·nr] −Gx

)
�Cmin, (37)((

ξ ⊗ 1[na] � (V ⊗ I[na]a)⊗ 1T
[nd]

)
�BT

)
u− s ≤

(
1[na·nr] −Gx

)
�Cmax, (38)

I[nr] ⊗ 1[na] ·Gx = 1[nr], (39)

diag
(
V ⊗ I[na] · z

)
·Gx = 0[na×nr], (40)

diag
(
V ⊗ I[na] · z

)
· s = 0[na×nr], (41)

x ∈ {0, 1}. (42)

5. Relaxation with cables

The difference for cables and ordinary bars is in carrying the stresses. The regular bars can be
both in tension and compression whereas the cables cannot carry compression. The problem for
tensile members and compressed bars remains the same as it was mentioned in Equations (6) to
(13). The case with compressed cables is slightly different. A cable cannot be compressed thus
σmin = 0. Therefore, the stress constraint (8) is adjusted to

0 ≤ si,j ≤ xi,jaiσ
max ∀(i, j). (43)

Now, the compatibility condition is fulfilled only for the compression part, i.e. Equation (10).
The term (Ejai/`j)b

T
j u in Equation (9) can attain any negative value, i.e. in case of a bar, it

will be in compression, in case of a cable, its sagging produces a zero stress. Therefore, the
term (1 − xi,j)cmin

i,j in Equation (9) is replaced with minus infinity to enable any contraction of
end nodes of the cable.

At this point we will limit our attention only to prescribed topology, i.e. to the pre-defined
positions of bars and cables. A vector M differentiates whether the truss-member is a cable
or a bar. For instance, a vector [01100] defines a 1,4,5-bar structure stiffened with cables in
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positions 2 and 3; i.e. in case of a cable, the jth element is equal to one, otherwise it is equal
to zero. Vector ¬M is a logical complement to vector M . Next, the vector M is used to
differentiate the limits of inequality (9). Then, the final derivation reads

min
x∈Bna·nr,
u∈Rnd,
s∈Rna·nr

ρ
(

(`⊗ 1[na])
T � (1[nr] ⊗ a)T

)
x (44)

s.t. Bs = f , (45)
σmin diag

(
1[nr] ⊗ a

)
x ≤ s ≤ σmax diag

(
1[nr] ⊗ a

)
x, (46)((

ξ ⊗ a⊗ 1T
[nd]

)
�BT

)
u− s ≥ diag

(
M ⊗ 1[na]

)
· (−∞) + . . . (47)

+diag
(
¬M ⊗ 1[na]

)
�
(
1[na·nr] − x

)
�Cmin,((

ξ ⊗ a⊗ 1T
[nd]

)
�BT

)
u− s ≤

(
1[na·nr] − x

)
�Cmax, (48)

I[nr] ⊗ 1[na] · x = 1[nr], (49)
x ∈ {0, 1}. (50)

Finally, note that inclusion of groups as presented in Section 4. to the cable-truss formulation
presented above is straightforward.

6. Conclusions

The presented contribution shows major steps needed for the relaxation of the cable-truss sizing
optimization problem. At this point, a Branch and Bound method can be used. However,
two issues remain unsolved. The first one is a free selection of a cross-sectional type, i.e.
whether the rod will be a cable or a truss. This is a domain of topology optimization and
therefore was not taken into account in our work. For more details, inspect e.g. a work on
tensegrity structures Kanno (2011), which are a special part of cable-truss structures. Note, that
the inclusion of the cross-sectional type needs additional binary variable for each rod which
can dramatically complicate computational demands of the optimization task. The second issue
deals with the prestressing of the cables. At this point, the procedure is relatively simple and is
also presented in Kanno (2011).
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Republic through the project GAČR P105/12/1146 and from the Grant Agency of the Czech
Technical University in Prague, the grant SGS13/034/OHK1/1T/11.

8. References

Arora, J. S. 2002: Methods for discrete variable structural optimization. In Recent Advantages
in Optimal Structural Design, chapter 1, pages 1–40. American Society of Civil Engineers.

Bendsøe, M. P. 1995: Optimization of structural topology, shape and material. Springer-Verlag,
1 edition, 1995.

459



Fox, R. L. & Schmit, L. A. 1966: Advances in the integrated approach to structural synthesis.
Journal of Spacecraft and Rockets, 3(6):858–866.

Kanno, Y. 2011: Topology optimization of tensegrity structures under compliance constraint:
a mixed integer linear programming approach. Optimization and Engineering, pages 1–36,
2011.

Mitchell, J. E.. 2002: Branch-and-cut algorithms for combinatorial optimization problems. In
Handbook of Applied Optimization, pages 65–77. Oxford University Press.
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A Matrix products

Hadamard product (also known as the element-wise product or dot product) of matrices
A[n×p] = (ai,j) and B[n×p] = (bi,j) is the matrix C[n×p] = ci,j = ai,jbi,j . Matrices A and
B has to have same size. The notation is C = A�B.

C = A�B = (ai,jbi,j) =

 a1,1b1,1 · · · a1,pb1,p
...

...
an,1bn,1 · · · an,pbn,p

 . (51)

Kronecker product (also known as the tensor product) of matrices A[n×p] = (ai,j) and
D[m×q] = (dk,l) is the matrix E with size mn× pq and defined as

E = A⊗D = (ai,jD) =

 a1,1D · · · a1,pD
...

...
an,1D · · · an,pD

 . (52)
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