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Summary: A meta-model (or a surrogate) is a modern name for what was
traditionally called a response surface. Our contribution presents an adaptive
updating procedure to improve the quality of the surrogate. It is based on the
minimax metric as an objective coming from the space-filling domain of the Design
of Experiments. The second objective is aimed at an approximation quality in the
region of interest. The final goal of the surrogate usage is to fit structural reliability
problems.
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1. Introduction

Reliability-based design optimization (RBDO) is a research area that tries to optimize struc-
tures under assumption of uncertainties. Usually, an objective function (e.g. a structure weight,
a maximal displacement etc.) is to be minimized with respect to constraints in which a proba-
bilistic approach is included (Kang, 2005). It is hard or nearly impossible to create an analytical
probabilistic approach on real structures thus some alternative method should be used. Our
planned goal is to utilize a surrogate-based Monte Carlo approach (Dubourg, 2011) enhanced
by an adaptive Design of (Computer) Experiments (DoE) (Sudret, 2007). This contribution
presents the adaptive part shown on a simple example.

Mechanical problems are often modeled by a finite element method (FEM). Monte Carlo
methods sample plenty of points in a design space to get the response of the FEM model.
Here, the designs of experiments are used to choose which solutions (so-called points) will be
solved to obtain maximum information out of the model with a minimal number of sampling
points. Concurrently, sensitivities of the inputs can be obtained. Here, we are optimizing space-
filling properties of the DoE by maximizing the minimal interpoint distance, i.e. the Maximin
approach, by utilizing Simulated Annealing algorithm (Myšáková and Lepš, 2012).

As the model is enumerated many times, it is appropriate to use some meta-model (surrogate)
that is easier to solve and give the approximation for the response on the original model. Radial
Basis Function Networks (RBFN) (Kučerová et al., 2005) or Kriging (Sacks et al., 1989) are
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examples of very popular meta-models that can be applied in our work. For generating meta-
models, an appropriate number of sampling points is needed (Jurecka, 2007). Moreover, to
improve the quality of the surrogate, an adaptive updating procedure is proposed. It is based
on the miniMax metric as an objective coming from the space-filling domain of the Design of
Experiments. Overall, there are two criteria that have to be optimized. The first criterion (i.e.
miniMax) is to maximize the nearest distance of the added point from already sampled points.
The second criterion is to be as close as possible to the approximate Limit State Function, i.e.
we are not concentrated on the whole domain, but only on the border between the failure and
safe region. These two criteria lead to multi-objective optimization. In our work, a modified
Nondominated Sorting Genetic Algorithm II (NSGA-II) is used.

A Nondominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2000) is a method
based on evolutionary principles. To create a new generation, only a mutation operator is used
to support an exploration part of the algorithm (Lee et al., 2004). A selection from several
consecutive Pareto fronts is followed by the computation of the crowding distances. Selected
individuals with the greatest crowding distance are then used as a new generation. After a pre-
determined number of generations, only Pareto front is added as an adaptive update.

The paper is organized as follows. Next section describes the surrogate that will be used. Par-
ticularly, the Radial Basis Function Network will be presented as an interpolation of any black-
box model. To solve multiobjective problems, it seems to be advantageous to use population-
based genetic algorithms. As an example, the NSGA-II algorithm is described. Next, the
multiobjective updating procedure will be introduced to consecutively improve the quality of
the RBFN. Finally, to demonstrate the efficiency of the mentioned approach, the results of one
well-known benchmark is presented.

2. Radial Basis Function Network

Artificial neural networks (NNs)2 were developed to simulate the processes in a human brain
but later on it was discovered that they can be effectively used for many problems like pat-
tern recognition, different approximations and predictions, control of systems, etc, see e.g.
works Bishop (1995), Haykin (1998) or Waszczyszyn and Ziemianski (2005). In this work,
they will be used “only” as general approximation tools.

A neural network is created with several neurons (here called perceptrons) which are mu-
tually interconnected. In this work we will deal with so called feed-forward, layered neural
networks, i.e. neurons form sorted layers, each layer is connected with the previous and the
next layer and the signal is processed directly from the inputs neurons to the output ones.

2.1. Approximation of a black-box function by RBFN
This type of a neural network is designed to simulate a black-box function f(x) by its interpo-
lation F (x) given by the sum of basis functions multiplied by appropriate weights, see Figure 1.
In other words,

f(x) ≈ F (x) =
N∑
i=1

bi(x)wi , (1)

where x is a vector of unknowns, bi(x) is a basis function of the i-th neuron, wi is a weight of
the i-th neuron and N is the total number of neurons creating the net.

2 Hereafter we will use only the term neural network instead of artificial neural network for the sake of simplicity.
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Figure 1: An approximation using RBFN

The basis function has the most often used “Gaussian” shape given by

bi(x) = e−‖x−ci‖
2/r , (2)

where ci is a vector of coordinates of the center for the i-th basis function and r is a norm.
Normalization ensures that basis functions will produce similar values for different scales in
multidimensional spaces. The selection of the norm r is not crucial and therefore the most
common form is used:

r =
dmax

dim
√
dimN

, (3)

where dmax is a maximal distance within the domain, dim is the number of dimensions and N
is the number of neurons.
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Figure 2: Training of a neural net

2.2. Training of a neural net

The weights of individual neurons can be obtained by the process of “training”, see also
Figure 2. Consider a set of training data

(xi, yi) , i = 1, . . . , p , (4)

where yi is a black-box function value in the xi point and p is a total number of records in the
training set. For a usual RBFN the training set is identical with the basis functions centers,
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therefore we can write the training set also as

(ci, yi) , i = 1, . . . , N . (5)

The weights wi can be obtained from the equality between function values of a black-box
function and its NN approximation in the function basis centers. Particularly,

f(ci) = F (ci) (6)

and therefore

minE = min
N∑
i=1

[(yi − F (ci))2 + λiw
2
i ] , (7)

where λi is used to regularize the system of equations 15 and it is set to λi = 10−7 in our
computations. Inserting Equation 1 into 7 we get

minE = min
N∑
i=1

[(yi −
N∑
j=1

bj(ci)wj)
2 + λiw

2
i ] . (8)

To satisfy Equation 7 resp. 8, the following identity has to be fulfilled

∂E

∂wi

= 2
N∑
i=1

[(yi −
N∑
j=1

bj(ci)wj)(bi(ci)) + λiwi] = 0 . (9)

Define a matrix [A]N
[A]N = [B]N + [Λ]N , (10)

where [B]N is a basis function matrix

[B]N = [b1,b2, . . . ,bN ]
T , (11)

bi = [b1(ci), b2(ci), . . . , bN(ci)] (12)

and a [Λ]N is a diagonal matrix with all λi non-zero members. Next, we can write a vector of
outputs

w = [w1, w2, . . . , wN ] (13)

and a vector of black-box function values

y = [y1, y2, . . . , yN ] . (14)

Then, Equation 9 becomes
[A]N w = y . (15)

By solving this system of linear equations we can obtain a vector of weights w for the given
training set. Hence, from Equation 1, we can easily compute the approximation F (x) ≈ f(x)
for any vector x.
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Figure 3: Calculation for NSGA-II of a) Nondominated rank, b) Crowding distance

3. Nondominated Sorting Genetic Algorithm II

A Nondominated Sorting Genetic Algorithm II (NSGA-II) was firstly published in Deb et al.
(2000). It is an improved approach of NSGA where the main disadvantage was the high com-
putational complexity of non-dominated sorting. In this version of the algorithm, there is no
need to sort the population in every generation; also the original version has a lack of elitism
and a need for specifying the sharing parameter for obtaining a wide variety of solutions. This
algorithm deals with all of these disadvantages for obtaining a better solution much faster (Deb
et al., 2002).

The first population is randomly created with a given distribution. In this work, the uniform
distribution within a given range (lower and upper bounds of the parameters) is obtained by
optimizing space-filling properties of the DoE by maximizing the minimal interpoint distance,
i.e. the Maximin approach, by utilizing Simulated Annealing algorithm (Myšáková and Lepš,
2012). All individuals are sorted into each front (see Fig. 3a). The number of solutions np which
dominate the solution p and a set of solutions Sp that the solution p dominates are calculated
for each individual p. Afterwards, the rank = 1 is assigned for every individual with np = 0.
These solutions are called nondominated and create the first front. This procedure is repeated
until each individual has assigned its own rank. This means that all individuals are placed
into the fronts. Solutions with rank = 1 are dominated by solutions with rank = 0, are
nondominated to each other and dominates all solutions with rank higher than 1. The same
rule is applied to all individuals with higher ranks. To maintain diversity within the optimal
fronts the crowding distance attribute is used for all nondominated solutions. This parameter
designates how close the other solutions in the neighbourhood (see 3b) are. The bigger the
crowding distance is, the better diversity in the solutions is.

The tournament selection for choosing individuals is used afterwards. The quality of the
individual is identified with the very low rank and with the very high crowding distance. The
more superior the individual is, the better chance to create an offspring with its properties is.
Consequently, the crossover and mutation operators are used for creating the new offspring
population.

The parent as well as the offspring population are sorted again and the rank and the crowd-
ing distance are assigned to each individual. Only N individuals comes into the tournament
selection. This procedure is stopped after the given number of generations is evaluated.
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4. Multiobjective updating of RBFN

Here, we propose an adaptive updating scheme for consecutive improvement of the RBFN. It
is based on an idea, that the new samples should be added in positions which are not covered
with already enumerated points. Such a property is characterized by a miniMax metric coming
from the space-filling domain of the Design of Experiments. Given a set of n points in a d-
dimensional hypercube, the miniMax is the radius of the biggest sphere with its center inside
the hypercube that does not contain any point of the set (van Dam, 2005; Pronzato and Müller,
2012). The second idea coming from Dubourg (2011) for reliability analysis purposes is to
sample only the Limit State Function and not the whole design space. In other words, the
sampling should concentrate only on a division line between two spaces, i.e. between the failure
domain and safe region, respectively. This enables to minimize computational demands since
only a smaller portion of the design domain is searched through.

These two criteria, i.e. the miniMax and the distance to the LSF can be used as two objectives
for the selection which samples will be evaluated. Therefore, we have applied the already
presented NSGA-II algorithm to find Pareto front of these two criteria. The algorithm is again
starting from the optimized DoE with respect to the Maximin metric, see e.g. Figure 4 (right).
Then, the NSGA-II algorithm is run and an approximation of Pareto front of the miniMax vs.
distance to the LSF is found. We are starting to evaluate the members from Pareto set from the
left, i.e. from the lowest distance to the LSF, see Figure 6 (top) for an illustration. Then we
recompute the miniMax metrics for all remaining points, not to add points that are too close to
each other. Therefore, only a portion of original Pareto front is truly evaluated. The procedure
iterate until a prescribed number of iterations is attained or if some error reaches a prescribed
level.
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Figure 4: Contours of the example (left) and starting DoE (right). Note that the red contour is
for LSF.

5. Example and results

The methodology will be shown on an academic example taken from (Waarts, 2000), see Fig-
ure 4 (left). The aim is to as closely as possible describe the zero level of the following function:

F (x) = min


3 + (x1 − x2)2/10− (x1 + x2)/

√
2

3 + (x1 − x2)2/10 + (x1 + x2)/
√
2

x1 − x2 + 7/
√
2

x2 − x1 + 7/
√
2

 , x ∈ [−8;+8]2 . (16)
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This function can be understood as a safety margin and its zero level, i.e. F (x) = 0, as
a Limit State Function. The progress is depicted in Figure 6. Five iterations drawn in columns
are shown. The top line presents individual Pareto fronts, showing evaluated solutions in red
points. The blue points then represents points of found Pareto front that are too close to already
evaluated ones. In the middle line the evaluation of the contours are presented. Note that already
after these five iterations, the contour of the zero line is starting to be similar to its goal depicted
in Figure 4 (left). The last line then documents the adaptive sampling along the LSF.
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Figure 5: The development of an error during the iterations of the proposed procedure.

To evaluate the difference between the original and the approximate model, i.e. between
Equation 16 and the RBFN, an error function has to be defined. Since we are interested in the
quality of the description of the LSF, i.e. in the division of the design domain into a positive
and a negative part, our error function counts a number of times the signs of these two models
differ. Particularly, the error is evaluated on a regular 1000 × 1000 grid over a design domain
and the differences are summed up. The evolution of this error for the studied benchmark is
shown in Figure 5.

6. Conclusions

The presented contribution shows a new sampling-based surrogate that is adaptively updated
during several iterations. The idea of the updating is based on the multiobjective nature of
the space-filling properties of DoEs. Here, two objectives – the miniMax and the distance to
some interesting region – are searched through with the evolutionary multiobjective algorithm.
Moreover, only a portion of found Pareto front is added to ensure good space-filling properties.
Since the iterative process is used, the tracked errors are consecutively minimized.

The future application of the proposed procedure is to solve the Reliability Based Design
Optimization (RBDO) problem consisting of minimization of the weight of the structure as
the first objective and minimization of the probability of failure characterized by a reliability
index as the second objective. The latter can be evaluated by Monte Carlo-based Sampling
algorithms utilizing the presented surrogate model. And again, this problem is multiobjective
and the presented NSGA-based algorithm can be used.
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Figure 6: Pareto front (top), contours of the problem with DoEs (middle) and DoEs’ points
(bottom). Key: Red – added and computed solutions, Blue – points that were too close to
other Pareto front points, Green – the remaining points of population and Blue empty points
– the original DoE.
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