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E. Myšáková1, M. Lepš2

Summary: Space-Filling Design Strategies known as Design of (Computer)
Experiments (DoE) create an essential part of a surrogate modeling. Two main
objectives are usually placed on the resulting designs - orthogonality and space-
filling properties. One of the space-filling metrics, called miniMax represents very
interesting research area. Given a set of n points in a d-dimensional hypercube,
the miniMax is the radius of the biggest sphere with its center inside the hypercube
that does not contain any point of the set. Our experiences show that majority of
these spheres are located at the border of the admissible domain. However, more
dangerous are spheres inside the domain. Therefore, a multiobjective procedure
is proposed to take into account not only miniMax, but also the positions of
the spheres with respect to the domains center. This procedure can be used for
comparing different designs or can be applied as an adaptive sampling strategy
based only on geometrical properties without any underlaying regression model.

Keywords: Design of Experiments, space-filling, miniMax, Voronoi dia-
gram, largest empty sphere problem, multiobjective optimization, adaptive
sampling

1. Introduction

The design of experiments (DoE) is an essential part of the development of any meta-model
(surrogate) (Simpson et al., 2001; Jin, 2005). The aim is to gain maximum knowledge from
a given system with a minimum number of designs. Since we assume that the final meta-model
is a priori unknown, the design should be spread over the domain as uniformly as possible. The
effectiveness of such DoE can be measured by several metrics aiming mainly at orthogonality
or space-filling properties. See references Cioppa and Lucas (2007); Hofwing and Strömberg
(2010) for orthogonal and sources Crombecq et al. (2009); Myšáková and Lepš (2011); Janou-
chová and Kučerová (2013) for space-filling criterions, respectively.

For our work, we have selected the miniMax (mM) for its simplicity and easiness in visual-
ization. Given a set of n points in a d-dimensional hypercube, the miniMax is the radius of the
biggest sphere with its center inside the hypercube that does not contain any point of the set.
This problem is also known as the largest empty sphere problem (LES) (Dickerson and Epp-
stein, 1995). In other words, the miniMax serves as an estimation of the space-filling properties
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of the set of points showing the biggest unsampled space. One possible solution is to inspect
all vertices forming Voronoi diagram (Okabe et al., 2000) of the given points. However, for the
unbounded case the number of vertices grows asO(ndd/2e) and for bounded case, i.e. the case of
points inside a hypercube, the number is even higher. The same is also valid for computational
demands, see Tables 1 and 2. Although the boundary of the domain can be efficiently solved by
mirroring (Pronzato and Müller, 2012), to reliably find the vertices of the Voronoi diagram in
higher dimensions is not a trivial task.

Table 1. Computational demands of
enumeration of miniMax value in terms

of needed CPU time and allocated
memory against the number of
dimensions for 100 point DoE.

Dimension Time [s] Memory [kB]
2D 0.082 684
3D 0.085 1576
4D 0.393 9540
5D 3.885 15796
6D 150.924 71916
7D 6297.79 454236
8D > 6 d. 18 h. > 8 GB

Table 2. Prediction of computational
demands of enumeration of miniMax

value in terms of needed CPU time and
allocated memory against the number of
dimensions for 100 point DoE based on

a fitted exponential function.

Dimension Time Memory [GB]
9D 117 days 11
10D 12,9 yrs 56
11D 521 yrs 286
12D 20977 yrs 1451

...
...

...

Recently, we have implemented a parallel evolutionary approach (Myšáková and Lepš, 2013)
that is able to guess an approximate value of the miniMax in a reasonable time. Our work fol-
lows the paper Lee et al. (2004), where an evolution strategy has been used to find the center of
the biggest empty sphere. This approach is able to find exact solutions only up to five dimen-
sions and no more. Therefore, an improved algorithm has been proposed, where the evolution
strategy is run in parallel on subdivisions of the original hypercube. This algorithm can produce
a reliable estimates of miniMax in several minutes even for a problem consisting of few dozens
of variables.

The availability of the miniMax value, although approximate, enables to explore properties
of a particular DoE. Since the miniMax is the radius of the biggest sphere that does not contain
any other point of the set, an interesting information can be the position of such a sphere.
Although our experience shows that majority of these spheres are located at the border of the
admissible domain, the most dangerous situation is that such spheres are inside the domain,
especially in the center of the design space.

The second application is a sequential sampling strategy, that is intuitively adding next
samples to the centers of the biggest spheres. This sampling strategy will not ensure some
properties of the original DoE like Latin Hypercube (LH) restrictions (Sallaberry et al., 2008;
Vořechovský, 2009; Crombecq et al., 2009; Myšáková and Lepš, 2012); however, it enables
to adaptively refine the original DoE without the knowledge of any surrogate that is usually
used, see e.g. works utilizing properties of Kriging (Jones, 2001) or Artificial Neural Networks
(Devabhaktuni and Zhang, 2000).

One of the drawbacks is that the number of potential points that should be inspected is rela-
tively huge. Therefore, we propose in this paper a multiobjective procedure that finds a trade-off
between miniMax value and the distance of centers of the spheres to the domains center. Simi-
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Figure 1: Exact miniMax computation - “by hand” (left) and with mirroring (right). Legend:
black points - the design points; black lines - Voronoi diagram; red points - Voronoi vertices;
green points - intersections of Voronoi edges and boundaries of given domain; blue points -
domain vertices; red, green and blue circles - the largest empty circles with centers in red, green
and blue points; magenta circle - the largest empty circle; magenta point - center of the largest
empty circle.

lar procedure can be found within reliability analyses or Reliability-Based Design Optimization
(RBDO) area, see e.g. works Sudret (2007); Dubourg (2011). However, these traditional ap-
proaches use Weighted Sum Method, see e.g. (Vitingerová, 2010), where each objective is
multiplied by a user defined weight and their sum is then optimized. In this contribution, the
exact Pareto front is computed. Presented results show that the number of points of the Pareto
set grows only linearly with the number of dimensions, and therefore, the proposed methodol-
ogy can be efficiently used even for multidimensional spaces. The rest of the paper is organized
as follows. Next section describes the methods for enumeration of exact as well as approximate
values of the miniMax metric. The description of the multiobjective methodology is accompa-
nied with the results showing Pareto fronts of several designs. Finally, the papers is finished
with the concluding remarks.

2. Enumeration of miniMax

2.1. The exact solution
We can obtain the exact value of the miniMax criterion utilizing Voronoi diagram. The center
of the largest empty sphere lies in Voronoi vertex or in the intersection of Voronoi edges and
a boundary of a given domain. In two dimensions it is possible to find all candidate points by
hand, see Figure 1. In higher dimensions this method brings some difficulties. It is necessary to
find the intersections of the Voronoi diagram with objects on boundaries of the given domain.
Also we have to consider all vertices of the given domain as candidate points for center of the
largest empty sphere.
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Figure 2: Serial (left) and parallel (right) evolution strategy. Legend: black points - the design
points; red points -“the parents”; blue points “the offsprings”.

Extension of this method providing an exact solution is based on mirroring of the design
points (Pronzato and Müller, 2012). The design points are mirrored through all (d − 1)-facets
and then Voronoi diagram is created. The mirroring guarantees presence of points on boundaries
and in vertices of the domain. Unfortunately the computation of Voronoi diagram is very de-
manding in higher dimensions and the mirroring (each point has to be mirrored (2d)-times) even
increases the memory demands, see again Tables 1 and 2. The problems we face in engineer-
ing practice are usually multidimensional (tens, even hundreds of input parameters), therefore
a method able to work in such domains is needed.

2.2. Serial evolution strategy
One possible solution is that an estimate of the miniMax value can be computed by some heuris-
tic or meta-heuristic method. In our case, an evolution strategy has been used. It is a method
based on natural principles of adaptation, mutation, crossover and selection. The technique was
created and developed in 1960s and 1970s by Rechenberg, Schwefel and co-workers, see e.g.
(Rechenberg, 1973) or (Bäck and Schwefel, 1995) and references therein.

The procedure runs in a loop with iterations called generations. In each generation there is
a population created by chromosomes. These are individuals spread over the solved domain. An
objective function value is assigned to each chromosome. A new population (“the offsprings”)
is derived from previous population (“the parents”) by mutation or crossover. There are two
general types: in (µ, λ)-ES a new generation is derived from offsprings of the previous gen-
eration, in (µ + λ)-ES a new generation is derived from the union of parents and offsprings
from the previous generation. The offsprings are created by mutation - by adding a normally
distributed (mean equals to zero, standard deviation decreases during the loops) random num-
bers to parental population. Then, the pairs from the union of “parents” and “offsprings” are
selected randomly and the one with larger distance to the nearest design point is chosen to new
parental population. This tournament scheme prefers better individuals for the next generation.
The number of generation can be set by user or the algorithm stops when meeting a termina-
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tion criterion. The procedure is depicted in Figure 2 (left). We can see how the population
approximates the solution.

2.3. Parallel evolution strategy
Although the serial method is robust and user can choose a size of population and the number
of generations according to the dimension of the problem, it is difficult to explore the whole
given domain. Therefore we have proposed the parallel version. We can parallelize the strategy
by two different ways: first, it is possible to run multiple searches over the whole domain
in parallel; second we can divide the domain into multiple subdomains and run the search
in parallel independently in these subdomains. Latter method is used in our computations.
Figure 2 (right) shows the procedure. Several subdomains are solved in parallel on individual
CPUs. We obtain candidate points from each subdomain and the point most distant from the
design points is the center of the largest empty sphere and its radius is an estimation of the
miniMax.

3. Results of Multiobjective selection

Here, we show the results of multiobjective procedure that finds an exact trade-off between
both, exact and approximate, miniMax values and the distances of centers of the spheres to
the domains center3. The result is Pareto front of compromising solutions that shows us where
are big holes in the given design and corresponding radiuses of these holes. This procedure is
visualized in Figure 3. The first line presents classical factorial design that is the most uniformly
spaced design4. Since all possible circles share the same radius, the worst case is in this case
the center of the design.

The middle and bottom line of Figure 3 represents the same 2D design. The middle line
corresponds to the exact solution of the miniMax problem, i.e. all vertices of Voronoi diagram
are inspected. The bottom line then represents an approximate solution found by our evolu-
tionary algorithm. All points inspected during the evolution process are shown in the objective
space. Note that the V-shape structure of points is formed by solutions lying on the boundaries
of the domain. The results show that the approximate solution covers well the exact solution.
Moreover, evolutionary Pareto set is reacher, visiting also smaller empty spaces in the vicinity
of the domains’ center.

Examples of higher dimensional spaces are shown in Figure 4. The first example is a rela-
tively sparse design with 17 points in 6 dimensions with the exact miniMax metric. This sparsity
is clearly visible; the smallest sphere’s radius is almost 70% of the side of the hypercube’s edge.
The second example is a 65 points, 12 dimensional problem. The number of dimensions is too
big, therefore, the approximate solution is used. Although more than 12000 candidate points
have been investigated, only 74 points form Pareto front. Our experience shows that the size of
Pareto fronts obtained by the proposed procedure does not exceed a hundred even for several
dozens of dimensions.
3 All domains are unit hypercubes in all presented examples.
4 Note that this property is counteracted by the worst projection properties (Crombecq et al., 2011) and massive
computational demands.
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2D, 16 points

 

 

Voronoi vertices inside and on the boundary of the domain - 25 points
center of the largest empty circle/sphere

Pareto front - 1 point
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2D, 27 points

 

 

Voronoi vertices inside and on the boundary of the domain - 54 points
center of the largest empty circle/sphere
Pareto front - 8 points
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2D, 27 points

 

 

all chromosomes - 2020 points
Pareto front - 44 points

Figure 3: Pareto fronts (left) for 2D DoEs (right) with shown circles; full factorial DoE (top) and
a random LHS design, same for middle and bottom line; middle line shows all exact Voronoi
vertices, bottom corresponding evolutionary approximation. Legend is same as in Figure 1.
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Voronoi vertices inside and on the boundary of the domain - 1606 points
center of the largest empty circle/sphere

Pareto front - 388 points
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all chromosomes - 12120 points

Pareto front - 74 points

Figure 4: Pareto fronts for 6D (top) and 12D (bottom) DoEs .

4. Conclusions

The aim of this contribution is to show that the addition of another objective and therefore, the
transmission of the single-objective space-filling problem to the multiobjective one can bring
a new insight to the utilization of the optimization of the Designs of Experiments. Particularly,
the exact and approximate computation of the miniMax metrics have been presented as the
space-filling criterion. The second objective, the distance to the domains’ center was used.
However, any other objective can be used. For instance, for the case of Reliability-Based Design
Optimization (RBDO), the distance to the Limit State Function (LSF) can be applied instead.
Then, the points forming Pareto front represents ideal candidates for adaptive sampling of the
LSF.
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Republic through the project GAČR P105/12/1146 and from the Grant Agency of the Czech
Technical University in Prague, the grant SGS13/034/OHK1/1T/11.

377



6. References
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design optimization. PhD thesis, Université Blaise Pascal, Clermont-Ferrand, France.
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