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Summary: This contribution addresses the method of Wang tilings used to
reproduce fluctuating stresses, strains and displacements in materials with random
microstructure subject to uniform strain excitation. Using small sets of Wang tiles
allows to avoid an abrupt evaluation of fluctuating fields in a large macro-scopic
domain, carrying a complete number of non-local solutions to desired mechanical
quantities and synthesized by means of stochastic tiling algorithm. Assuming each
tile discretized by the same regular finite element mesh, all admissible micro-scale
problems can be obtained effectively by the Schur complement method.
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1. Introduction

In engineering applications we are witnessing a steadily increasing pressure to the utmost ma-
terials performance. It can be achieved, provided a detailed understanding of characteristic
mechanical processes taking place on microstructural level. To that end, we draw our attention
in high performance analysis of micro-scopic fluctuation fields in random particulate compos-
ites subject to uniform strain excitation that can be used as microstructure-sensitive enrichment
functions in Partition of Unity (Melenk & Babuška (1996)) and Hybrid Finite Element methods
(Freitas (1998); Novák, Kaczmarczyk, Grassl, Zeman, Pearce (2012)). The proposed technique
rests on Wang tilings, known from computer graphics and materials science, where it has been
applied to synthesis of random, statistically consistent, microstructural patterns on open planar
domains. A synthesized domain is composed of tiles, statistical volume elements (Fulwood,
Niezgoda, Adams, Kalidindi (2010)), gathered in sets. All distinct tiles together must involve
complete morphological information of the texture quantity. If so, the set corresponds to repre-
sentative volume element.

In real world applications, thousands of tile copies may be required to cover up a structural
scale domain. In addition, and contrary to a purely microstructural information synthesized so
far (presented by Novák, Kučerová, Zeman (2012)), the sought enrichment fields are nonlocal.
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Figure 1: Wang tile, a) ancient domino piece, b) Wang tile with three different codes on four
edges, c) another Wang tile obtained by rotating tile (b) by π/4 clockwise, d) tile (b) with edge
regions concentrated to edges.

In other words, the neighbours of a certain distance from each individual tile are responsi-
ble for the fields inside the tile, and must be therefore taken into account in order to arrive
at equilibrated traction fluctuations or compatible displacements on tile interfaces. It yields,
thousands of micro-scale problems, square tilings of optional neighbourhood extent m × m,
Tabs. 2 and 3, with imposed periodic boundary conditions have to be solved. Recently, struc-
tured discretizations arising from raster image representations of microstructures have been
resolved by Moulinec-Suquet Fast Fourier Transform based algorithm (Moulinec & Suquet
(1994)). However, strongly heterogeneous materials with a significant contrast in material pa-
rameters of individual phases, e.g. high porosity foams or reinforced plastics, have caused seri-
ous convergence difficulty, thereby, turning our attention to conventional finite element method
(FEM) and high performance computing (HPC).

2. Wang tiles, sets and tilings

The method of Wang tilings, introduced by Hao Wang (see Wang (1961)), is a fresh subject to
computational mechanics community. In general, it can be viewed as a planar domino game or
a jigsaw puzzle3. This study proceeds from the recent observation (Novák, Kučerová, Zeman
(2012)) that the Wang tile sets represent a generalization to the periodic unit cell concept (PUC),
common in multiscale simulations. However, contrary to PUC framework, the appealing fea-
ture of tilings consist of the ability to reproduce non-periodic microstructural patterns. A brief
specification of Wang tiling features follows.

A single Wang tile can be referred to as a piece of square polyomino (tetromino or say dou-
bled domino) which is not allowed to rotate when brought together with other pieces through
congruent edges (green, red, yellow triangular sub-regions in figure Fig. 1(b)). This means,
that two tiles with identical sequence of edges, mutually rotated by kπ/4 are considered as
different, Fig. 1(b,c). In practical applications, the triangular edge regions are concentrated
to edges denoted either by colors (see e.g. Wang (1965)), alphabetical codes (in paper by
Novák, Kučerová, Zeman (2012)) or enumerated by integers (Culik (1996); Aristoff & Radin
(2011)), Fig. 1(d). A collection of unique tiles that enable to cover up open planar domains
aperiodically is called tile set, Fig. 2(a). It is referred to as Wnt/nc

1 − nc
2, where W stands for

“Wang” initial, nt is the number of tiles in the set and nc
i denotes the number of edge codes in

ith spatial direction. The number of edge codes nc in the ith spatial direction can be chosen

3 Here we recall the ETERNITY I and II game, see e.g. http://en.wikipedia.org/wiki/Eternity_
II_puzzle
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Figure 2: (a) Wang tile set W8/2-2, (b) example of valid tiling.

nc
i ncs nNW nt Tile set

nc
1 nc

2

2 2 16 2 8 W8/2-2
3 3 81 2 18 W18/3-3
4 4 256 2 32 W32/4-4
5 5 625 2 50 W50/5-5
· · · · · ·

Table 1: Number of tiles in Wang tile sets with respect to nc
i , n

cs and nNW .

arbitrarily, however, the number of tiles nt must satisfy, Tab. 1,

nt = nNW
√
ncs, (1)

where ncs = (nc
1n

c
2)

2 is the number of tiles in the so called complete set and nNW ∈ {2, . . . ,
√
ncs}

stands for the optional number of tiles with an identical arrangement of northwestern (NW) edge
codes, α, γ adjacent to shaded tile t = 5 in Fig. 2(a). The complete set of ncs tiles is obtained by
permuting the chosen codes ci, see Novák, Kučerová, Zeman (2012, 2013) for further details.

A tiling is the assembly of multiple copies of tiles from the set, Fig. 2(b). If there are no
missing tiles in the tiling lattice and a morphological information across congruent edges is
compatible everywhere we say the tiling is valid (so called ground state, see Aristoff & Radin
(2011)). Since, invalid tilings are meaningless from the viewpoint of microstructure synthesis,
the abbreviation tiling is used instead of valid tiling (Novák, Kučerová, Zeman (2012)).

When tiling a domain, we use stochastic algorithm created by Cohen, Shade, Hiller, Deussen
(2003) (CSHD). The tiles are randomly selected from a set and successively placed one by one
from the top-left corner towards bottom-right, so that the edge codes of newly placed tiles must
comply with those of their neighbours placed previously. Owing to the rectangular nature of
Wang tiles, it is sufficient to control the north-western pair of edges. The index of a new tile to
be placed is selected randomly. In order to keep the procedure random, there must be always at
least two of such tiles associated with each north-western edge-code combination. Aperiodicity
of resulting tilings is thus guaranteed when assuming that the random generator never returns a
periodic sequence of numbers (see Cohen, Shade, Hiller, Deussen (2003) for further details).
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(a) (b)

Figure 3: Tiling map, with highlighted neighbours of the first tile from W8/2 � 2, a) nearest,
adjacent neighbours, b) first and second layer of neighbour tiles.

3. Tiles with nonlocal stress fluctuation patterns

Contrary to the synthesis of purely microstructural data, as reported e.g. in Novák, Kučerová,
Zeman (2012), the subject of this contribution is more difficult as it aims at synthesis of non-
local field patterns. In what follows, we limit our exposition to stress fluctuations due to the
uniform strain excitation4 �� . Regarding the non-local character of stresses, we do not last
with the same number of tiles as it is normally used for microstructural data, see eg. Zrůbek,
Kučerová, Novák (2012). The distribution of all components ��

ij in each tile depends, at least,
on their distribution in adjacent tiles.

To simplify the exposition, let us assume the highlighted tiles t = 1 in Fig. 3(a). The
stresses in each of the tiles are the functions of the interior microstructure and stress distribution
in eight tiles placed around. It yields that, despite the fact that all tiles “one” have identical
microstructure, the ��

ij components will differ for distinct combinations of surrounding tiles. It
is also obvious that those differences will be further pronounced by decreasing ratio of the tile
edge dimension �, Fig. 2(a), and characteristic microstructural length(s), disk diameters and/or
typical distances among the disks in Fig. 4(a).

In order to eliminate the traction jumps in a synthesized enrichment function, larger neigh-
bourhoods should be considered, see Fig. 3(b). A particular number of distinct stress pattern
patches in all tiles 1, ..., nt, with respect to the particular extent of neighbours m × m is given
by disjunctive colligation of admissible patches in each tile as, Tab. 2,

ncomb
m× m = nt · (2nc

i)
2(m� 1) · (nNW )(m� 1)2. (2)

4 The stress fluctuations in a microstructured domain, arising from uniform excitations in normal and shear direc-
tions, simply called “stresses”.
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Tile set
No. of all possible tilings Om× m for increasing extent m × m

1 × 1 3 × 3 5 × 5 7 × 7 9 × 9 11 × 11

W8/2-2 8.0 · 100 3.3 · 104 3.4 · 1010 9.2 · 1018 6.3 · 1029 1.1 · 1043

W18/3-3 1.8 · 101 3.7 · 105 2.0 · 1012 2.7 · 1021 9.4 · 1032 8.3 · 1046

W32/4-4 3.2 · 101 2.1 · 106 3.5 · 1013 1.5 · 1023 1.7 · 1035 4.7 · 1049

W50/5-5 5.0 · 101 8.0 · 106 3.3 · 1014 3.4 · 1024 9.2 · 1036 6.3 · 1051

Table 2: Number of tilings to be solved in order to obtain all possible combinations of stress
patterns for tiles t � 1, ..., nt.

� � � �

� � � �

(a) (b) (c) (d) (e)

Figure 4: Stress patch flowchart, a) map of two distinct tilingsOm× m = O3× 3, b) microstructure
of tiling O3× 3, c) stress fluctuations ��

x in O3× 3, d) O3× 3 decomposition, e) distinct stress
fluctuation patterns (patches) in tile t = 1 as functions of different neighbourhoods.

3.1. Designing tile set morphology

As mentioned above, to create open domain tilings of self-equilibrated stress fluctuations (bal-
anced traction fluctuations in the tiling lattice), it is necessary to store a number of copies of
each tile t � { 1, ..., nt } . This is given by all possible combinations of tiles that can arise
around each tile t, when preserving the edge matching rules Tabs.(2, 3). An example of the
genesis of two distinct copies of tile t = 1, embedded in the smallest neighbourhood m = 3, is
represented by flowcharts in Fig. 4.

Having all the Om× m at hand, we solve ncomb
m× m of periodic boundary value problems where

Om× m are the subject to uniform strain loadcases as in classical homogenization framework.

Tile set
Cardinal i-th and ordinal ij-th directions No. combinations

nt N S E W NW NE SW SE ncomb
3× 3

W8/2-2 8 4 4 4 4 2 2 2 2 32, 768

W18/3-3 18 6 6 6 6 2 2 2 2 373, 248

W32/4-4 32 8 8 8 8 2 2 2 2 2, 097, 152

W50/5-5 50 10 10 10 10 2 2 2 2 8, 000, 000

Table 3: No. combinations of tiles on neighbour positions in cardinal i-th and ordinal ij-th
directions for minimal Wang tile sets, with extending to 3 × 3 tiles.
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In two dimensions, we set the loading strain vector component successively to one, while the
remaining two equal to zero. Despite the domain Om×m is not periodic on external boundary,
the periodic boundary conditions are acceptable considering the very local character of stress
fluctuations and their negligible action to the solution in the central tile (see Terada, Hori, Ky-
oya, Kikuchi (2000)). For example, instead of eight tiles (recall that nt = 8 for W8/2 − 2)
necessary to reconstruct either microstructural or stress patterns according to the methodology
reported in Novák, Kučerová, Zeman (2013), this number increases to 32, 768 when using the
proposed strategy, see the first row of Tab. 3.

4. Evaluation of stress fluctuation patterns in tiles

4.1. Moulinec-Suquet FFT based solver

As mentioned above, the periodic boundary conditions are applied to tilings Om×m, despite the
microstructure does not need to necessarily exhibit periodicity. The periodic boundary condi-
tions allow as to use the solution to elastic fields by means of the fast Fourier transform (FFT)
based Moulinec-Suquet solver (Moulinec & Suquet (1994)). It is characterised by a well-known
Lippman-Schwinger type equation. The periodic kernel of the integral formulation admits a
compact closed-form expression in the Fourier space, so that its action to sought stresses can
be effectively evaluated by FFT algorithms (Frigo & Johnson (2005)). The complexity of such
solution proceeds from recent observations by Zeman, Vondřejc, Novák, Marek (2010), where
the original iterative scheme is replaced by the solution to the linear system of equations of the
size N = d × m × `, where d denotes the number of degrees of freedom (DOF) in a single
discretization node (pixel). Each iteration thus measures O(N logN) operations. Although the
computational overhead of this numerical strategy is imperceptible, it has several demerits as
Gibbs effects, problems with infinite contrast of phases to cite a few.

4.2. Schur complement method

Assuming now the situation, when each tile is discretized by the finite element method. It
has to be emphasized that all tiles of the same type are discretized by identical finite element
mesh. Optionally, each pixel is a single element. A conventional approach of solving the full
system would be thus extremely demanding. In order to speed up the computation, the Schur
complement method can be used. For each type of tile, the Schur complement is evaluated.
It means, all DOFs defined inside the tile are eliminated out to the edges, therefore, the tile is
represented by its boundary DOFs only. Now, the tile resembles a generalized finite element or
a subdomain in the domain decomposition methods. For simplicity, we illustrate the complexity
on the following example. Let each tile be covered by a FE discretization of 200 × 200 finite
elements, i.e. ` = 200 px, yielding approximately 40, 000 nodes per tile. However, the Schur
complement method reduces the nodes to boundaries, resulting the total number of nodes to
800. The smallest admissible tiling O3×3 is composed of 9 tiles and contains 360× 103 nodes,
which must be solved in the case of conventional approach. Contrary, the Schur complement
method requires approximately 5× 103 nodes.

The Schur complement method, also known as the substructuring method (Kruis (2004);
Medek, Kruis, Tvrdı́k, Bittnar (2007)), is based on special ordering of DOFs. The DOFs defined
in the internal nodes are ordered as first and the DOFs defined on the boundary are ordered as
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last. With respect to this ordering of unknowns, the system of equations defined on a single tile
can be written in the form (

Kii Kib

Kbi Kbb

)(
di

db

)
=

(
f i

f b

)
, (3)

where di stands for the vector of internal unknowns, and db represents its external (boundary)
counterpart. By analogy, f i and f b, respectively, are associated with the part of the right hand
side vector connected to tile interior and edges. Symbols Kii,Kib,Kbi,Kbb are the appropriate
matrices. If the matrix Kii is non-singular, it further follows from Eq. 3, that the vector di can
be recasted as

di = K−1
ii (f i −Kibdb), (4)

and the original system of equations, Eq. 3, reduces to

(Kbb −KbiK
−1
ii Kib)db = f b −KbiK

−1
ii f i. (5)

Notice, that the above system of equations contains only the unknowns defined in the boundary
nodes.

The Schur complement matrix Kbb − KbiK
−1
ii Kib is the stiffness matrix of a tile and it

resembles the stiffness matrix of a generalized element. In other words, for the tiling with 9
tiles, the problem of reconstruction of mechanical fields is assembled similarly to a problem
with 9 finite elements.

5. Brief results

So far very simple numerical experiments have been executed to compare computing time
needed by the FFT based solver and the Schur complement method. In the performed tests
we changed a few variables to get an overview of how different variables affect the computation
time. The first of the variables is the ratio of elastic modulus of phases, which influence on the
time required for the calculation is shown in the Fig. 5(a), where capital ’S’ is for the Schur
complement method and capital ’F’ denotes the FFT based solver. Lowercase ’s’ or ’b’ stands
for small (26px) or big (78px) tiles and numbers 4, 6 or 8 correspond to required accuracy
10−4, 10−6 or 10−8, respectively. Increasing the ratio of elastic modulus of phases increases
slightly the calculation time of the Schur complement method but many times in case of the
FFT method. The presented results confirm that high contrast in material stiffness leads to
enormous computational time needed by FFT based solvers and the Schur complement method
becomes much faster.

The second variable we change during the experiments is the required accuracy of results.
The dependence of time on the required accuracy is shown in the Fig. 5(b), where the key
is almost same as in Fig. 5(a) but with the difference that here the numbers 2, 10, 100 and
1000 indicate the ratio of elastic modulus of phases. One can notice that computational time is
almost not affected by required accuracy in case of the Schur complement method, while it is
significantly increased in case of the FFT based method.

The third altered variable is size of solved domains, i.e. size of the employed tiles. We
used only two sizes, namely small tiles with the 26px edge and the large tiles with the 78px

706



(a) (b)

Figure 5: Brief results, a) dependence of computation time on ratio of elastic modulus of phases,
b) dependence of computation time on required accuracy.

edge. As it turned out, the solved domain size significantly affects the time required to solve a
Schur complements on individual tiles, because the number of DOF’s on whole tile increases
quadratically. Nevertheless, Schur complements need to be solved only once at the beginning
and further calculations are affected only with a linear increase of DOF’s on the tile boundary.

6. Discussion and future work

The results thus show that using the Schur complement method we can count with high or
even infinite elastic modulus ratios (in the case of porous materials) of phases, which is not
possible using the FFT based solver and furthermore, we are able to achieve high accuracy of
calculations in a reasonable time.

Specific properties of the Wang tilings lead to special implementation in parallel environment
which results in substantial speedup with respect to other methods. First step is devoted to the
elimination of the internal DOFs on tiles. It means, the Schur complement matrices Kbb �
KbiK

� 1
ii Kib are evaluated for each tile 1, ..., nt. The smallest number of tiles is 8 (W8/2 �

2) and therefore the identical number of processors is used in this step. After the all Schur
complements are computed, all of them are sent to remaining cluster processors which will
be used for the reconstruction of mechanical fields only in central tile. While relatively small
number of processors is used for the Schur complements (e.g. eight), the number of processors
allocated for the reconstruction is assumed to be much larger, e.g. hundreds or thousands.
Implementation of this broadcast is crucial. It will be studied whether computation of all Schur
complements on all processors is not faster then the broadcasting.

Second step of the computation will be devoted to the reconstruction of the mechanical fields.
As mentioned above, the number of all tilings is known in advance. Each processor used for the
reconstruction is assumed to be loaded by ncomb

m× m/nCPU tasks, where nCPU denotes the number
of processors. Regarding the Schur complements of 1, ..., nt are known, the reconstruction is
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performed only by means of the appropriate Schur complement matrix and boundary solution.
As mentioned in Section 1. we also plan to use the reconstructed fields in Partition of Unity

and Hybrid finite element methods. This will require the integration of the field fluctuations. In
particular, the solution of the hypothetical macro-level analysis is done on the master processor.
The solution requires correct values of the mechanical fields obtained from the micro-level
problems in integration points. In addition, it is known which tile contains the appropriate
integration point. Therefore, the values in the integration point are obtained from the appropriate
tile by reading the value from computer memory. However, a special attention has to be devoted
to the implementation of the data exchange between slave processors which contain the tiles and
the master processor. The number of integration points on the macro-level must be determined
first.

In order to minimize the communication between processors, all requests to slave processors
are aggregated and yielding the response is aggregated as well. Therefore, there will be only
a single communication between the master processor and each slave. If all integration points
receive their values, the macro-level problem can be finished.
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J. Novák, A. Kučerová, J. Zeman, “Microstructural enrichment functions based on stochastic
Wang tilings”, Accepted for publication - Modelling and Simulation in Materials Science and
Engineering, http://arxiv.org/abs/1110.4183, 2013.

K. Terada, M. Hori, T. Kyoya, N. Kikuchi, “Simulation of the multi-scale convergence in
computational homogenization approaches”, International Journal of Solids and Structures,
2285–2311, 2000.

H. Wang, “Proving theorems by pattern recognition–II”, Bell Systems Technical Journal, 1–41,
ISSN 0005–8580, 1961.

H. Wang, “Games, logic and computers”, Scientific American, 98–106, 1965.
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