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Summary: Theoretical, experimental and numerical analysis of a spherical pen-
dulum is carried out. The stability of the response in a vertical plane is analysed
in the theoretically predicted resonance region. Mathematical model respects the
non-linear character of the pendulum and allows to introduce asymmetrical damp-
ing. Experimental analysis is performed using a special experimental frame where
a pendulum is supported by the Cardan joint and damped by two magnetic units.
Uni-directional harmonic excitation is applied to the system. These units are able
to reproduce linear viscous damping independently in both principal response com-
ponents. Measured data are compared to theoretical and numerical results.
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1. Introduction

Many civil engineering structures are equipped by tuned mass dampers (TMDs). These devices
are designed to draw away vibrational energy from the structure and dissipate it internally,
reducing the undesired response. In case of tall structures the typical TMD has a form of a
heavy pendulum placed close to the top of the structure. Such devices are very popular for
their reliability and simple maintenance, see e.g. (Haxton, 1974; Náprstek & Pirner, 2002).
Dynamic behaviour of such a substructure is however significantly more complex than it is
supposed by widely used simple linear single degree-of-freedom (SDOF) models working in
a vertical plane only. Such a linear model is satisfactory only if the amplitude of kinematic
excitation at the suspension point is very small and if its working frequency remains outside of a
resonance frequency domain which is possible only at the cost of lower efficiency of the damper.
Moreover, the typical installation differs significantly of the idealized model of a pendulum.
The bob can be suspended on chains, sometimes from several hinges. Damping of the bob is
usually realized by installing oil dampers in certain directions only. The presented theoretical
and experimental models comprise such properties up to certain level.

In the experimental as well as in numerical treatment an uni-directional harmonic excitation
is supposed. If the excitation frequency belongs to the resonance region, post-critical states can
emerge. These states are characterized by either highly increased in-plane response, or by more
or less complicated space trajectories of various types. From the practical point of view, such a
type of the response destroys effectiveness of the TMD.
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The linear damping proportional to the response velocity will be included by means of the
quadratic Rayleigh dissipative function:
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where βξ, βζ , βη are the coefficients of viscous damping in individual response components.
However, due to the nature of the problem, the damping in the vertical direction will not be
taken into account (βη = 0).

The final approximate Lagrangian system can be obtained after application of the Hamilton’s
principle (see (Náprstek & Fischer, 2009) for derivation)
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Natural frequency of the corresponding linear pendulum is given by ω2
0 = g/r. The equations

(5) are mutually independent if only linear terms are taken into account.
Assuming the harmonic excitation a(t) = a0 sinωt and semi-trivial solution in the form of

(see e.g. (Tondl, 1991) for details)

ξ0 = ac cosωt+ as sinωt ; ζ0 = 0 (6)

expression for the non-linear resonance curve of the amplitude of the response (R2
0 = a2c + a2s)

can be found as follows:

R2
0

[
4ω2β2

ξ +

(
(ω2 − ω2

0) +
R2

0

2r2

(
ω2 − 3

4
ω2
0

))2
]
− 4ω4a20 = 0 (7)

Limits of the semi-trivial solution stability (or validity) modified for the case of distinct
damping coefficients in the individual directions are as follows:
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Derivation of (8-9) follows the same procedure like in the case for βξ = βζ . Figure 2 shows
configuration of the resonance curve and both stability limits for several values of in-plane and
out-of-plane damping coefficients. It can be seen that the stability of the semi-trivial solution is
more sensitive to the damping coefficient in the out-of-plane direction (βζ) — the semi-trivial
solution loses its validity even for relatively high values of damping coefficient.

If a more general form of the stationary solution is assumed, namely

ξ(t) = ac cosωt+ as sinωt ; ζ(t) = bc cosωt+ bs sinωt (10)
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Figure 2: Resonance curve (thick solid line) and in-plane (ξ - solid) and out-of-plane (ζ
- dashed) stability limits of the semi-trivial solution for varying configuration of βξ, βζ ∈
{0.05, 0.1, 0.15}. For each plot, on the horizontal axis is excitation frequency ω, on the ver-
tical axis is the amplitude R = R0.

the resonance curve of the semi-trivial solution (7) will be augmented by branches correspond-
ing to the spatial movement. Formulation for the case when the both damping coefficients are
the same (βξ = βη) has been published previously, see (Náprstek & Fischer, 2009). For the case
βξ 6= βη the generalized resonance curve has a more complicated form:
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Figure 3: Resonance plot for the more general solution (10). The solid blue and red curves stand
for the semi-trivial resonance curve and the S 6= 0 branch. The green (bullets) and magenta
(triangles) lines correspond to the numerically computed maximal total amplitudes (

√
ξ2 + ζ2)

and out-of-plane amplitudes (ζ) respectively. Left column: numerical resonance is computed
for continuously varying excitation frequency. Right column: independent computation of the
maximal amplitude for each excitation frequency. For each plot, on the horizontal axis is the
excitation frequency ω and on the vertical axis is the amplitude R =

√
R2

0 +R2
1.
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seen, that setting βξ = βη = β in equations (11-12) the terms involving P become zero and
original equations published in (Náprstek & Fischer, 2009) will be restored. However, the both
first terms in (11-12) introduce a new parameter P 2 into the expressions and this makes the both
conditions less transparent and usable.

It should be noticed here, that if the semi-trivial solution (12) is valid (i.e. S = 0), the
equation (11) reduces itself to the resonance curve (7). In the opposite case a new branch
appears in the resonance plot which corresponds to the spatial movement of the pendulum. It
starts from the spike of the semi-trivial resonance curve, crosses it from below and ends again
on the original resonance curve, forming three bifurcation points. Stability of the individual
branches can be checked using the Jacobi determinant of the differential system. The resonance
plot is depicted in the Figure 3 for several values of damping βξ = βη = β ∈ 0.02, .., 0.06.
Solid blue and red curves stand for the semi-trivial resonance curve and the S 6= 0 branch. The
green (bullets) and magenta (triangles) lines correspond to the numerically computed maximal
total amplitudes (

√
ξ2 + ζ2) and out-of-plane amplitudes (ζ) respectively.

The both columns in Figure 3 show limited stability of the upper part of the S 6= 0 resonance
branch. Numerical simulation shows that if the excitation frequency increases slowly during
simulation the numerical solution of the system (5) is able to keep the spatial character and
to follow the upper part of the S 6= 0 resonance branch for a certain number of excitation
frequencies (see left column of Figure 3). On the other hand, it is almost impossible to reach
this state without knowledge of the exact initial conditions. The numerical resonance curves in
the right column of Figure 3 were computed independently for each single excitation frequency
and using prescribed fixed initial conditions. The same result can be obtained if random initial
conditions are used.

3. Experimental model

Figure 4: Experimental pendulum

For the experimental evaluation and verification
of the above described theory the authors use an
experimental pendulum, designed to comply with
the assumptions of the theoretical and numerical
model. This pendulum is suspended at Cardan
joint attached to a trolley to assure uni-directional
excitation, see see in Figure 4. The length of the
pendulum is 0.41 m, mass of its bob was relatively
high to increase inertia and thus to lower struc-
tural damping. Fundamental eigenfrequency of
the pendulum was measured as f0 = 0.76 Hz, i.e.
ω0 = 4.8 rad · s−1. Response of the pendulum
was measured for excitation frequencies ranging
from fl = 0.7 Hz to fu = 1.1 Hz with increments
∆f = 0.01 Hz, (i.e. range ω = 4.40 . . . 6.91 rad · s−1). To cover the full range of the res-
onance interval, the each sweep was started for excitation frequency slightly higher than the
eigenfrequency of the pendulum and small initial disturbance was given to the bob. Then was
the excitation frequency gradually changed in small increments up or down to cover the whole
frequency range. Each frequency was kept constant for three minutes and angles of the sus-
pender were measured and recorded. To eliminate the transition effects, only the last minute of
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each record was taken into account in the post-processing. The same approach has been used in
computation of the numerical resonance curve in the left column of Figure 3. Further details of
the experimental setup have been published previously in (Pospı́šil et al., 2012).

Results of the experimental measurements are summarized in Figures 5–7. Each figure
shows experimental and numerical resonance curve for selected values of the damping coef-
ficients. The main part of each figure is the pair of green curves: the dark green thick line
corresponds to the maximal total amplitude of the measured response of the experimental pen-
dulum (

√
ξ2 + ζ2). Its numerically computed counterpart is depicted in light green with large

bullets. The green curves are repeated in the both figures for ξ and ζ (left and right column).
The thin blue and pink curves stand for minimal and maximal amplitudes of the measured time
histories of the ξ component in the left column and ζ component on the right. The greyish area
between these curves indicates non-stationarity of the response. Thus, if the response is station-
ary the both curves coincide. The brown curve with small bullets in figures for ξ component
(left) and magenta line with triangles in figures for ζ (right) show the numerically computed
maxima. The numerical results follow the procedure which have been used for the left column
of Figure 3. Finally, each figure is supplemented with the theoretical resonance curve of the
corresponding semi-trivial solution (dotted blue) and two stability limits (dashed brown lines).

To comment the Figures 5–7 a few preliminary remarks have to be made. Although Miles
(1984) or Náprstek & Fischer (2009) divide the resonance interval in detail, for purpose of

Figure 5: Experimental and numerical resonance plots for βξ = 0.018 and increasing βζ . In-
plane component (ξ) and total amplitude on the left, out-of-plane movement (ζ) and total am-
plitude on the right. In Figures 5–7: solid lines – experimental data, solid lines with signs –
numerical data, dotted and dased lines – theoretical results, cf. Figure 2. Green – total amplitude
R, blue, pink, brown & magenta – component amplitudes (ξ and ζ).
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Figure 6: Experimental and numerical resonance plots for βξ = 0.038 and increasing βζ . In-
plane component (ξ) and total amplitude on the left, out-of-plane movement (ζ) on the right.

Figure 7: Experimental and numerical resonance plots for βξ = 0.073 and increasing βζ . In-
plane component (ξ) and total amplitude on the left, out-of-plane movement (ζ) on the right.
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that the maximal in-plane response ξ depends mainly on the value βξ and influence of βζ is
negligible. On the other hand, maximal amplitude of the out-of-plane motion depends on both
damping coefficients approximately equally.

Data shown in Figure 8 correspond well to the results of the extensive numerical study ob-
tained the authors and presented in Figure 4 in (Fischer et al., 2012). The current experimental
data confirm the hypotheses outlined in the last-mentioned work, namely that the occurrence of
non-zero out-of-plane motion does not depend significantly on the value of βζ .

4. Conclusions

Analytical, experimental and numerical investigation has shown that widely used linear model
of the damping pendulum is acceptable only in a very limited extent of parameters concerning
pendulum characteristics and excitation properties. A more complicated non-linear model must
be introduced for a general analysis.

The results of the experimental and numerical investigation have exhibited a good agreement.
Role of the individual damping coefficients βξ and βζ which has been postulated by the authors
in (Fischer et al., 2012) has been confirmed and improved. It has been shown, that initiation of
the spatial response is more sensitive to damping in the in-plane direction (βξ). The maximal
amplitude of the in-plane response exhibits almost no sensitivity to value of the out-of-plane
damping (βζ). Increasing of the both components βξ and βζ shorten the resonance interval and
diminish the maximal amplitude of the out-of-plane component of the response.

The presented results also respond to some open questions which were left in (Fischer et
al., 2012). It has appeared, that the stable branch of the resonance curve corresponding to
spatial movement of the pendulum can coexist with a much milder stable planar branch and
both branches can be reached numerically and experimentally. On the other hand, the spatial
movement is much more sensitive to initial conditions in the both numerical and experimental
approach. Surprisingly, the experimental pendulum is able to follow the spatial branch of the
resonance curve significantly longer that the numerical procedure does for increasing excitation
frequency.

From the practical point of view, it is highly recommended to design the damping pendulum
absorber in such a way that any intersections of the resonance curve with the stability limits are
avoided. Especially intersection with in-plane (ξ) stability limit should be prevented, otherwise
negative influence of the pendulum in the resonance domain is to be expected in both along-
wind as well as in cross-wind directions.

5. Acknowledgment

The kind support of the Czech Scientific Foundation No. 103/09/0094, Grant Agency of the
ASCR No. A200710902 as well as the support of RVO 68378297 are gratefully acknowledged.

6. References
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