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Summary:
An extensive development of efficient methods for stochastic modelling enabled un-
certainty propagation through complex models. In this contribution, we present a
review and comparison of several approaches such as stochastic Galerkin method,
stochastic collocation method or polynomial regression based on Latin Hypercube
Sampling. The advantages and disadvantages of these methods are demonstrated
within the comparison with the traditional Monte Carlo method on a simple illus-
trative example of a frame structure.

1. Introduction

There are many important factors limiting the service life of buildings. An appropriate reli-
ability analysis needs to take account uncertainties in the environmental conditions as well as
in structural properties. Thanks to the growth of powerful computing resources and technol-
ogy, recently developed procedures in the field of stochastic mechanics have become applicable
to realistic engineering systems. Methods quantifying uncertainties can be classified into two
groups: (i) reliability analysis methods, such as the first- and second-order reliability method
(FORM/SORM (Ditlevsen, 1996)) computing the probability of failure related to limit states;
(ii) the higher moment analysis focused on estimation of the higher-order statistical moments of
structural response as stochastic finite element methods (SFEM), see (Matthies, 2007; Stefanou,
2009) for a review. SFEM is a powerful tool in computational stochastic mechanics extending
the classical deterministic finite element method (FEM) to the stochastic framework involving
finite elements whose properties are random (Ghanem, 1991).

In this contribution we concentrate on the SFEM based on polynomial chaos expansion
(PCE) used for approximation of the model response in the stochastic space. Uncertainty in
the model output can be then quantified using Markov chain Monte Carlo method employed
for sampling model parameters and evaluating the PCE instead of full numerical model. The
efficiency of SFEM thus depends on computational requirements of the PCE construction and
its consequent accuracy.

There are several methods for construction of PCE-based approximation of a model re-
sponse: stochastic Galerkin method (Babuska et al., 2004; Matthies and Keese, 2005), stochas-
tic collocation methods (Babuska et al., 2007; Xiu, 2009) and linear regression (Blatman and
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Sudret, 2010). The principal differences among these methods are follows. Stochastic Galerkin
method is purely deterministic, but leads to solution of large system of equation and needs an
intrusive modification of the numerical model itself. Stochastic collocation methods is also
a deterministic method, does not require intrusive modification of a model, but uses a set of
model simulations on a sparse grid constructed for a chosen level of accuracy. The computation
of PCE coefficients is based on explicit formula. The linear regression is based again on a set of
model simulations performed for a stochastic design of experiments, usually obtained by Latin
Hypercube Sampling. The PCE coefficients are then obtained by regression of a model results
at the design points, which leads to a solution of a system of equations. The aim of this paper is
to compare these methods in terms of computational requirements and resulting accuracy on a
simple illustrative example of a frame structure.

2. Motivation

In order to demonstrate a performance of the methods on an engineering structure, we have
chosen a simple frame presented in (Marek et al., 2003). The geometry, load distribution and
supports of the frame are shown in Figure 1.
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Figure 1: Scheme of a frame structure.

The geometrical parameters of particular beams are considered as uncertain with a given
nominal value and uncertain variation defined by a prescribed histogram given in (Marek et al.,
2003) and depicted in Figure 2. Particular nominal values, corresponding random variables and
types of histograms are listed in Table 1. The prescribed loading are linear combinations of
dead load, long-lasting load and short-lasting load given as:

q = D1Dσ1 + S1Sσ1 + L1Lσ1 [kN/m], (1)
F = D2Dσ2 + S2Sσ2 + L2Lσ2 [kN], (2)

where particular loads are statistically independent and described by random variables with
extreme values and variations defined by histograms given in Table 2 and depicted in Figure 2.

The maximal internal forces will appear in the column at support C and can be computed
from the displacement and rotation of the joint A. The unknown displacements r can be for
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Table 1: Geometrical data and variations
Geometrical data Nominal value Variable Histogram
Moment of inertia I1 = 449.5 cm4 Iσ1 N1-05
Moment of inertia I2 = 449.5 cm4 Iσ2 N1-05
Moment of inertia I3 = 864.4 cm4 Iσ3 N1-05

Length l1 = 3 m lσ N1-01
Length l2 = 5 m lσ N1-01
Length l3 = 4 m lσ N1-01

Table 2: Loading and variations

Load Extreme Value Variable Histogram
Dead load D1 = 11 kN/m Dσ1 DEAD2

Short-lasting load S1 = 9 kN/m Sσ1 SHORT1
Long-lasting load L1 = 5.5 kN/m Lσ1 LONG1

Dead load D2 = 3.5 kN Dσ2 DEAD2
Short-lasting load S2 = 2.2 kN Sσ2 SHORT1
Long-lasting load L2 = 1.7 kN Lσ2 LONG1
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Figure 2: Histograms of uncertain parameters and corresponding cumulative density functions.

linear elastic behaviour considered here computed by the finite element method or displacement
method, which are very well-known. Hence, we start directly with the latter one from discretised
form of equilibrium equations:

Kr = f , (3)
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which – after applying the boundary conditions – takes the following particular form:
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3. Polynomial chaos expansion

In order to accelerate the sampling procedure in uncertainty propagation process, the evalua-
tions of a numerical model including solutions of Eq. (3) can be replaced by evaluations of a
model surrogate. In particular, we search for an approximation of the response r by polynomial
chaos expansion (PCE) (Matthies, 2007; Stefanou, 2009). PCE can be used to approximate
the response with respect to probability distribution of the random variables. The approxi-
mation of the response is then weighted according to the probability distribution of variables
i.e. the approximation is more precise in regions with higher probability. The convergence of
the approximation error with the increasing number of polynomial terms is optimal in case of
orthogonal polynomials of a special type corresponding to the probability distribution of the
underlying variables (Xiu and Karniadakis, 2002). For example, Hermite polynomials are asso-
ciated with the Gaussian distribution, Legendre polynomials with the uniform distribution and
so on.

In the example described in the previous section, all the random variables are listed in Ta-
bles 1 and 2. Let us simplify the notation and denote them as mi, m = (. . . ,mi, . . . )

T =
(Iσ1, Iσ2, Iσ3, lσ, Dσ1, Sσ1, Lσ1, Dσ2, Sσ2, Lσ2)

T. Since none of these variables has a continuous
probability density function (PDF), but their distribution is described by discrete histograms,
we introduce new standard random variables ξ = (. . . , ξi, . . . )

T) with a continuous PDF. The
variables mi can be then expressed by transformation functions tjk of variables ξi according to
the given histogram j and type k of the ξi distribution, i.e.

mi = tjk(ξi) . (5)

For case of discrete histograms, the transformation functions are non-smooth. Particular exam-
ples of transformation functions will be discussed in Section 4.

Once we have expressed the model variablesm as functions of standard variables ξ, also the
model response becomes a function of these variables. This function can be thus approximated
by the PCE of a type corresponding to the type of ξ distribution, i.e.

r̃(ξ) =
∑
α

βαψα(ξ), (6)
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where βα is a vector of PC coefficients βα,i corresponding to a particular component of system
response ri. ψα(ξ) are multivariate polynomials. The expansion (6) is usually truncated to the
limited number of terms nβ , which is very often related to the number of random variables nξ
and to the maximal degree of polynomials np according to the relation nβ =

(np+nξ)!

np!nξ!
.

3.1. Linear regression

A very general method of computing PC coefficients in Eq. (6) is a well-known linear regression
(Blatman and Sudret, 2010). The underlying assumption of linear regression is that the surrogate
r̃ is a linear combination of the parameters β, but does not have to be linear in the independent
variables ξ. The application is based on the three following steps: (i) preparation of data Ξ ∈
Rnξ×nd which are obtained as nd samples of parameter vector ξi (ii) evaluation of the model for
samples ξi resulting in response samples ri organised into the matrix R ∈ Rnr×nd , where nr is
a number of response components and (iii) computation of PC coefficients βα organised into
the matrix B ∈ Rnr×nβ using e.g. the ordinary least square method (OLS).

Since the most time-consuming part of this method consists in evaluations of the model for
samples of random variables, the choice of these samples represents a crucial task with the
highest impact on the computational time requirements. The simplest way is to choose the
samples by Monte Carlo method, i.e. to draw them randomly from the prescribed probability
distribution. However, the accuracy of the resulting surrogate depends on a quality, how the
samples cover the defined domain. The same quality can be achieved by smaller number of
samples when drawn according to some stratified procedure called design of experiments (DoE).
Latin hypercube sampling (LHS) is a well-known DoE able to respect the prescribed probability
distributions. There exist also more enhanced way of optimising the LHS (see e.g. (Janouchová
and Kučerová, 2013)), but these are not subject of the present work and the simplest version
of unoptimised LHS is employed. Each computation of a response sample ri then includes the
evaluation of the transformations (5) and the evaluation of the model (3).

The computation of the PC coefficients B starts by evaluation of all the polynomial terms
ψα for all the samples ξi and saving them in the matrix Z ∈ Rnd×nβ . The ordinary least square
method then leads to

ZTZBT = ZTRT (7)

which is a linear system of nβ equations.

3.2. Stochastic collocation

Stochastic collocation method is based on an explicit expression of the PC coefficients:

βα,i =

∫
ri(ξ)ψα(ξ) dP(ξ) , (8)

which can be solved numerically using an appropriate integration rule (quadrature) on Rnξ .
Equation (9) then becomes

βα,i =

nd∑
j=1

ri(ξj)ψα(ξj)wj , (9)

where ξj stands for an integration node and wj is a corresponding weight. Here we employ ver-
sions of the Smolyak quadrature rule, in particular quadratures with the Gaussian rules as basis
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for uniform (GQU) and normal (GQN) distributions and nested Kronrod-Patterson quadrature
rules for uniform (KPU) and normal (KPN) distributions, see Heiss and Winschel (2008).

It is clear that the stochastic collocation method is similar to linear regression, because in
both cases the most computational effort is needed for evaluation of a set of model simulations.
The principal difference can be seen in sample generation, where stochastic collocation method
uses a preoptimised sparse grids while the linear regression is based on stochastic LHS.

3.3. Stochastic Galerkin

Stochastic Galerkin method is principally different to the previous ones, which are based on a
set of independent model simulations. Stochastic Galerkin method is an intrusive method, i.e. it
requires reformulation ofthe governing equations of the model (3). To this purpose, we rewrite
Equation (6) in using matrix notation

r̃(ξ) = (I⊗ψ(ξ))β, (10)

where I ∈ Rnr×nr is the unity matrix, ⊗ is the Kronecker product, ψ(ξ) is a nβ-dimensional
vector of polynomials and β is a (nβ · nr)-dimensional vector of PC coefficients organised here
as β = (. . . ,βi, . . . )

T, where βi consists of PC coefficients corresponding to i-th response
component.

Substituting the model response r in Equation (3) by its PC approximation r̃ given in Equa-
tion (10) and applying Galerkin conditions, we obtain∫

ψ(ξ)⊗K(ξ)⊗ψT(ξ) dP(ξ) · β =

∫
ψ(ξ)⊗ f(ξ) dP(ξ) , (11)

which is a linear system of (nβ · nr) equations. The integration can be done numerically or
analytically. The analytical solution is available e.g. when all terms in the stiffness matrix and
in the loading vector are polynomials with respect to ξ. In such a case, the method is called
fully intrusive. In our particular example, we can multiply the governing Equation (4) by l3σ
so as to obtain polynomials in terms of model parameters m. However, we will not obtain
polynomials in terms of ξ due to non-smooth transformations (5) produced by discrete nature
of histograms prescribed to m. Hence, in such a case, a numerical integration leading to semi-
intrusive Galerkin method is inevitable.

4. Results

The goal of the presented work is to compare the described methods for approximating the
model response and accelerating the Monte Carlo (MC) sampling performed for estimation of
probability distribution of displacements uA, wA and ϕA.

4.1. Hermite polynomials

We start by assuming ξ as standard Gaussian variables and thus we employ Hermite polyno-
mials for model surrogate. The reference estimation of mean µ and standard deviation σ of
particular displacements is obtained by MC sampling with 107 samples. Table 3 shows the re-
quired computational time and relative errors in predictions for linear regression and stochastic
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collocation method for four polynomial degrees p. The relative errors in the mean prediction
are obtained as εµ = |µPCE−µMC|

µMC
, where µMC stands for the mean estimated by the MC method

and and µPCE stands for the mean obtained using a chosen surrogate. The relative errors in
predictions of standard deviations are obtained in a same way.

Table 3: Time requirements and errors in predicting response mean and standard deviation in
case of prescribed histograms for model parametersm.

Method nd p Time [s]
uA[mm] wA[mm] ϕA[mrad]
µ σ µ σ µ σ

MC 107 − 22191 0.21 0.03 0.01 0.00 4.09 0.79

εµ [%] εσ [%] εµ [%] εσ [%] εµ [%] εσ [%]

LHS

21 1 133 0.09 28.32 0.62 44.07 0.02 27.59

201 2 622 0.02 0.36 0.40 1.02 0.06 0.05

1201 3 2687 0.01 0.13 0.09 1.77 0.03 0.12

5301 4 8696 0.04 0.21 0.01 0.78 0.04 0.23

KPN

21 1 166 4.81 9.34 4.25 8.42 4.89 9.37

201 2 811 4.81 5.50 4.25 4.30 4.89 5.48

1201 3 2648 2.25 7.32 1.97 3.69 2.30 5.14

5301 4 8721 0.31 11.32 0.29 6.15 0.31 7.91

GQN

21 1 132 6.68 22.99 6.07 15.51 6.78 23.01

221 2 623 4.81 73.94 4.25 50.99 4.90 58.18

1581 3 2706 3.12 59.65 2.81 37.00 3.17 46.84

8761 4 8698 1.13 187.85 1.10 129.41 1.14 147.77

The results show very good predictions obtained by linear regression, while stochastic col-
location based on KPN rules leads to considerable errors in prediction of standard deviations
and GQN rules seems even diverging. However, when looking at the whole probability density
functions obtained for uA depicted in Figure 3, even the prediction obtained by linear regression
is not satisfactory.
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Figure 3: Probability density functions of displacement uA in case of prescribed histograms
for model parametersm.

The reason for such unsatisfactory results is probably highly nonlinear transformation (5) for
parameters with prescribed histograms LONG1 and SHORT1, as shown in Figure 4. In order
to test this assumptions, we have replaced these two prescribed histograms by the new ones
more close to normal distribution, see Figure 5. New errors in predicting mean and standard
deviations are listed in Table 4.
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Figure 4: Transformation relations for prescribed histograms.
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Figure 5: New histograms of model parameters with corresponding cumulative density func-
tions and transformation relations.

Table 4: Time requirements and errors in predicting response mean and standard deviation in
case of new histograms for model parametersm.

Method nd p Time [s]
uA[mm] wA[mm] ϕA[mrad]
µ σ µ σ µ σ

MC 107 − 21874 0.21 0.03 0.01 0.00 4.06 0.79

εµ [%] εσ [%] εµ [%] εσ [%] εµ [%] εσ [%]

LHS

21 1 158 0.03 0.85 0.02 0.54 0.04 1.17

201 2 673 0.00 0.06 0.03 0.22 0.01 0.08

1201 3 2736 0.01 0.03 0.01 0.06 0.01 0.02

5301 4 8770 0.00 0.04 0.00 0.01 0.01 0.03

KPN

21 1 132 0.06 0.12 0.05 0.06 0.06 0.11

201 2 654 0.06 0.08 0.05 0.01 0.06 0.08

1201 3 2768 0.02 0.26 0.01 0.19 0.02 0.26

5301 4 8978 0.00 0.13 0.01 0.13 0.00 0.14

GQN

21 1 132 0.07 0.21 0.06 0.20 0.07 0.19

221 2 668 0.06 0.06 0.05 0.00 0.06 0.07

1581 3 2770 0.03 0.48 0.03 0.29 0.03 0.48

8761 4 8988 0.00 0.21 0.00 0.20 0.00 0.20

One can see that the replacement of the two histograms led to a significant improvement of
the results achieved by all the methods, but we can also notice that the GQN based collocation
provide very good worse than the other methods and also the difficulties with convergence. On
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the other hand, linear regression gives the worst prediction for 1st order polynomials, but these
are improved by very fast convergence.

The same improvement can be seen also in prediction of the whole probability density func-
tion depicted in Figure 6.
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Figure 6: Probability density functions of displacement uA in case of new histograms for model
parametersm.

In order to investigate the performance of fully intrusive stochastic Galerkin method, we have
changed the prescribed distributions for model parameters once more. This time, we assume
all the parameters to be normally distributed with the original values of mean and standard
deviation. In such a case, the transformation (5) becomes the 1st order polynomial and hence,
analytical integration is available. Figure 7 shows the functional dependence of displacement uA
for described types of probability distribution prescribed to model parameters. Figure 7a shows
that the relation between uA and model parameters m is linear, while the high nonlinearity
appears in the relation to standard variables ξ in case of prescribed histograms, see Figure
7b. Replacement of the two histograms LONG1 and SHORT1 by the new ones more similar to
normal distributions leads to almost linear uA−ξ relation namely in the high probability region,
see Figure 7c. Finally, prescription of the normal distribution to model parameters provides the
linear uA − ξ relation as shown in Figure 7d.
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Figure 7: Functional dependence of displacement uA on model parameters m (a), on standard
variables ξ in case of prescribed histograms (b), in case of new histograms (c) and in case of
normal distribution (d).

The errors in prediction of mean, standard deviation and whole PDF are shown in Table 5 and
Figure 8 including results obtained by fully intrusive stochastic Galerkin method. The results
proof that the uA − ξ relation is now linear and thus the 1st order polynomials are sufficient for
an excellent surrogate and the differences among the particular methods are here negligible in
terms of accuracy as well as the time requirements.

243



Table 5: Time requirements and errors in predicting response mean and standard deviation in
case of normal distribution for model parametersm.

Method nd p Time [s]
uA[mm] wA[mm] ϕA[mrad]
µ σ µ σ µ σ

MC 107 − 3692 0.207 0.033 0.009 0.002 4.090 0.795

εµ [%] εσ [%] εµ [%] εσ [%] εµ [%] εσ [%]

LHS

21 1 132 4 · 10−2 3 · 10−1 5 · 10−2 5 · 10−1 6 · 10−2 6 · 10−1
201 2 618 4 · 10−5 7 · 10−3 1 · 10−3 1 · 10−3 3 · 10−4 3 · 10−3
1201 3 2702 4 · 10−6 4 · 10−5 5 · 10−6 2 · 10−5 5 · 10−7 4 · 10−6
5301 4 8680 2 · 10−7 1 · 10−6 2 · 10−7 4 · 10−7 4 · 10−8 2 · 10−8

KPN

21 1 135 2 · 10−5 4 · 10−2 2 · 10−4 6 · 10−2 6 · 10−5 2 · 10−2
201 2 618 4 · 10−6 1 · 10−5 2 · 10−6 3 · 10−5 3 · 10−6 2 · 10−5
1201 3 2725 3 · 10−8 5 · 10−7 2 · 10−7 2 · 10−7 2 · 10−8 2 · 10−7
5301 4 8662 2 · 10−11 2 · 10−8 4 · 10−9 2 · 10−9 4 · 10−10 1 · 10−9

GQN

21 1 132 3 · 10−5 4 · 10−2 2 · 10−4 6 · 10−2 6 · 10−5 2 · 10−2
221 2 620 4 · 10−6 4 · 10−5 2 · 10−6 7 · 10−5 3 · 10−6 3 · 10−5
1581 3 2757 3 · 10−8 5 · 10−7 1 · 10−7 3 · 10−7 2 · 10−8 2 · 10−7
8761 4 8701 9 · 10−11 2 · 10−8 4 · 10−9 3 · 10−9 4 · 10−10 1 · 10−9

GM

− 1 133 3 · 10−5 4 · 10−2 4 · 10−3 6 · 10−2 6 · 10−5 1 · 10−2
− 2 620 4 · 10−6 4 · 10−5 4 · 10−3 1 · 10−1 3 · 10−6 4 · 10−6
− 3 2673 5 · 10−8 3 · 10−6 4 · 10−3 1 · 10−1 5 · 10−7 2 · 10−5
− 4 8704 8 · 10−8 2 · 10−6 4 · 10−3 1 · 10−1 4 · 10−7 2 · 10−5

p = 1 p = 2 p = 3 p = 4

uA[mm]

P
D
F
(u

A
)

 

 

MC
LHS
KPN
GQN
GM

uA[mm]

P
D
F
(u

A
)

 

 

MC
LHS
KPN
GQN
GM

uA[mm]

P
D
F
(u

A
)

 

 

MC
LHS
KPN
GQN
GM

uA[mm]

P
D
F
(u

A
)

 

 

MC
LHS
KPN
GQN
GM

Figure 8: Probability density functions of displacement uA in case of normal distribution for
model parametersm.

4.2. Legendre polynomials

In order to complete the presented comparative study, we also tested the usage of uniformly
distribution standard variables ξ accompanied by the surrogate based on Legendre polynomials.
Here again we have tried two situations, first with the prescribed histograms and second with the
prescribed uniform distribution. The results presented in Table 6 and Figure 9 manifest overall
worse behaviour of the Legendre surrogates.
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Table 6: Time requirements and errors in predicting response mean and standard deviation using
the surrogate based on Legendre polynomials.

Method nd p Time [s]
uA[mm] wA[mm] ϕA[mrad]
µ σ µ σ µ σ

U
ni

fo
rm

MC 107 − 3754 0.27 0.05 0.01 0.00 5.46 1.20

εµ [%] εσ [%] εµ [%] εσ [%] εµ [%] εσ [%]

LHS
23 1 132 0.02 0.57 0.26 1.19 36.33 71.13

243 2 619 0.70 0.12 0.49 0.08 36.15 71.75

1607 3 2703 0.67 0.60 0.57 0.63 36.17 71.98

H
is

to
gr

am

MC 107 − 21207 0.21 0.03 0.01 0.00 4.09 0.79

εµ [%] εσ [%] εµ [%] εσ [%] εµ [%] εσ [%]

LHS
23 1 132 0.89 33.76 0.85 11.24 29.40 138.19

243 2 623 15.71 33.35 18.95 28.56 33.00 297.79

1607 3 2692 79.24 1194.17 50.22 979.51 532.55 2042.39
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Figure 9: Probability density functions of displacement uA obtained using the surrogate based
on Legendre polynomials.

5. Conclusion

The presented paper presents a review and comparison of three methods for construction of a
polynomial chaos-based surrogate of a numerical model under the assumption of random model
parameters. In particular, the investigated methods are stochastic Galerkin method, stochastic
collocation method and polynomial regression based on Latin Hypercube Sampling. Particular
features of these methods are discussed throughout the paper. The quality of obtained surrogates
in terms of accuracy as well as the time requirements are demonstrated within the comparison
with the traditional Monte Carlo method on a simple illustrative example of a frame structure.
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