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Summary: Distortion of yield surface was observed in numerous experiments
with various types of metals. The distorted surface shows high curvature in the
direction of load and flattening in the opposite direction. Feigenbaum and Dafalias
(2008) proposed a new phenomenological model to capture this phenomenon. In
sum, Feigenbaum-Dafalias directional distortional model includes six independent
material parameters to be identified. The present paper describes an identification
algorithm for parameters of the model.
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1. Introduction

Modern experiments show distortion of yield surface due to strain hardening, see e.g. Wu &
Yeh (1991). The distorted yield surface becomes highly curved in the load direction, while in
the opposite direction, it becomes flatter. In order to describe this phenomenon, several models
were developed, see e.g. Ortiz and Popov (1983) and Francois (2001).
Feigenbaum and Dafalias (2007) presented a model involving the fourth-order tensor to capture
the effect of distortion. Evolution equations of internal variables of the model are derived to meet
the dissipation inequality. Further, Plešek (2010) discussed sufficient conditions to maintain
convexity of distorted yield surface. This convexity guarantees convergence of return mapping
numerical integrators, as shown in Plešek (1997).
Later, Feigenbaum and Dafalias (2008) presented a simplified form of the model, where the
fourth-order tensor is reduced to the dot product of inner variables multiplied by one distortional
parameter c only. The model is referred to as the α-model with constant distortional parameter
and includes six parameters in total.
In this paper, the identification algorithm for model’s parameters is proposed and verified on
virtual experimental data. The algorithm is based on two categories of experimental data. The
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first ones are the stress-strain curves with unloading at certain strain levels. The second one is
the yield surface distorted at certain level of developed plastic strain.
The text is organized as follows. Section 2 overviews the α-model with fixed distortional pa-
rameter. In Section 3, analytical relations for fundamental load cases are provided. In Section 4,
relations from Section 3 section are compared with experimental data. The comparison yield to
system of ten nonlinear equations for six unknown parameters which is solved in a closed-form.
In Section 5, identification algorithm is verified. Since no complex experimental data are avail-
able, virtual ones are used instead. Finally, identification algorithm is evaluated.

2. Feigenbaum-Dafalias Simple Directional Distortional Hardening Model

Feigenbaum and Dafalias (2008) proposed simplified form of their general directional distor-
tional hardening model. In this simplified form, the yield function is given by

f(σ) =
3

2
[1− c (nr :α)] (s−α) : (s−α)− k2 = 0. (1)

Here, σ is the stress tensor; s is the deviatoric stress tensor; α is the backstress tensor; c is a
positive material parameter; k is a scalar internal variable; the double dot symbol represents the
inner product of two tensors as in α :β = αijβij . Finally,

nr =
s−α
‖s−α‖ (2)

is the unit tensor pointing in the direction of load relatively to the center of the yield surface,
and ‖.‖ denotes the Euclidean norm of a second order tensor.
The model’s internal variables are governed by the standard evolution equations. Plastic strain
obeys the associated flow rule

ε̇p = λ
∂f

∂σ
, (3)

the kinematic hardening rule of Armstrong-Frederick’s type retains the evanescent memory
member so that

α̇ = a1 (ε̇p − a2‖ε̇p‖α) , (4)

and similarly for the isotropic part

k̇ = λκ1k (1− κ2k) . (5)

The initial values at time t = 0 are defined as ε̇p = 0, α = 0 and k = k0, that is, k0 is the
initial yield stress. Details of this constitutive model are presented in Feigenbaum and Dafalias
(2008).
For further, it is useful to have some formulas ready. One may explicitly express the gradient

∂f

∂σ
=

3

2
‖s−α‖ [2nr − c (nr :α)nr − cα] (6)

and its norm as∥∥∥∥ ∂f∂σ
∥∥∥∥ =

3

2
‖s−α‖

√
[2− c (nr :α)] [2− 3c (nr :α)] + c2α :α. (7)
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Moreover, the gradient yield
∂f

∂σ
=

∥∥∥∥ ∂f∂σ
∥∥∥∥n, (8)

where n is the outward unit normal to the yield surface.
It was proved in Feigenbaum and Dafalias (2008) and Plešek (2010) that the necessary and suf-
ficient condition, which renders dissipation positive and, simultaneously, preserves strict con-
vexity for all times, reads

‖cα‖ < 1. (9)

For monotonic loading and as t→ +∞, the saturated state is reached when

n− a2α = 0. (10)

Since α starts from zero and the magnitude of the limit backstress is 1/a2, one may write

‖α‖ ≤ 1/a2. (11)

Equation (10) and Inequality (11) yield

c < a2. (12)

This constraint needs to be satisfied anytime.
To illustrate behavior of the discussed model, simulations of distortion of the yield surface are
plotted. Figure 1 shows the evolution of subsequent yield surfaces in two subspaces. Here, ma-
terial is loaded by uniaxial tension until the limit state has been reached. Material parameters are
taken from Feigenbaum (2008). Thus, a1 = 10 500 MPa, a2 = 0.02 MPa−1, κ1 = 6 000 MPa,
κ2 = 0.012 MPa−1, c = 0.019 MPa−1, k0 = 128 MPa. Note, that the condition stipulated by
Inequality (12) is fulfilled.
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Figure 1: The gradual distortion of the yield surface due
to uniaxial tension shown in the two sub-spaces.

3. Analytical Relations for Fundamental Loading Cases

In this section, analytical models of the stress-strain curve for tensile/compression loading
(SSC) and the distorted yield surface (DYS) in the σ–

√
3τ space are derived.
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In case of uniaxial tension, Equations (3), (4), and (5) lead to relations for isotropic and kine-
matic part of hardening

α̇11 = a1ε̇
p
11

(
1− a2

√
3

2
α11 sgn (s11 − α11)

)
, (13)

k̇ = κ1(1− κ2k)
ε̇p11 sgn (s11 − α11)√

1− c
√

3

2
sgn (s11 − α11)α11

. (14)

Henceforth, the term ‘ sgn (s11 − α11)’ will be denoted as sgn .
Using

dg

dt
=

dg

dεp11

dεp11
dt

, (15)

Equations (13) and (14) yield the final form

α′11 = a1

(
1−

√
3

2
a2α11 sgn

)
, (16)

k′ =
1

2

κ1(1− κ2k) sgn√
1−

√
3

2
c α11 sgn

, (17)

where (.)′ operator is defined as (.)′ ≡ d(.)

dεp11
.

Integrating Equation (16), one obtains closed-form solution

α11 =

√
2

3

1

a2 sgn

[
1−

(
1−

√
3

2
a2α11,0 sgn

)
· exp

(
−
√

3

2
a1a2

(
εp11 − εp11,0

)
sgn

)]
,

(18)
where α11,0 = α11

(
εp11,0

)
defines the initial condition. Solving of Equation (17) leads to the

integral ∫
sgn · dεp11√

1−
√

3

2
c α11 sgn

, (19)

where α11 is given by Equation (18). Assuming Inequality (12), and using substitutions√
3

2
c α11 sgn = ϕ,

√
1− ϕ = p and

√
a2

a2 − c
p = q, it is possible to find the solution in
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form

k =
1

κ2

[
1− (1− κ2k0) · exp ξ

]
, (20)

ξ = −
√

2

3

κ1κ2

a1
√
a2 (a2 − c)

(
tanh−1(p)− tanh−1(p0)

)
,

p(εp11) =

√√√√1 +
c

a2 − c

(
1−

√
3

2
a2α11,0 sgn

)
exp

(
−
√

3

2
a1a2(ε

p
11 − εp11,0) sgn

)
,

p0 = p(εp11,0) =

√√√√1 +
c

a2 − c

(
1−

√
3

2
a2α11,0 sgn

)
.

Thus, Equations (18) and (20) express the evolution of α11 and k, respectively. Finally, the stress
tensor component σ11 can be expressed from Equation (1) by

σ11 = sgn · k√
1−

√
3

2
c α11 sgn

+
3

2
α11. (21)

Substituting Equations (18) and (20) into Equation (21), one obtains relation between the stress
and strain in case of uniaxial load. Formally, Equation (21) may be rewritten as σ11 = σ11(ε

p
11).

The stress-strain curve is a special case of Equation (21), where sgn = 1, εp11,0 = 0, α11,0 =

α11

(
εp11,0

)
= 0 and k

(
εp11,0

)
= k0.
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Figure 2: Relation α11 = α11(ε
p
11) Figure 3: Relation k = k(εp11)

Regarding an analytical approximation of the distorted yield surface in the σ–
√

3τ space, sup-
pose that uniaxial loading of material, which leads to the plastic deformation, is modeled. This
load causes the distortion of the yield surface represented by the evolution of internal variables,
the backstress component α11 and the k quantity. At a certain state, the loading is stopped,
and material is unloaded, and subsequently, material is loaded by tension and shear (torsion)
simultaneously.
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f
(
σ,
√

3τ
)

= 0

In σ–
√

3τ space, the distorted yield surface can be expressed as the set of yield points (σ,
√

3τ)
which all satisfy the yield condition (1). For the uniaxial tensile pre-stress, the yield condition
yields

f =

1− c
3
(σ

3
− α11

2

)
α11√

6
(σ

3
− α11

2

)2
+

2

3
(
√

3τ)2

 · [6(σ3 − α11

2

)2
+

2

3
(
√

3τ)2
]
− 2

3
k2 = 0, (22)

which is shown in Figure 5.

4. Identification of Parameters

The identification method is based on comparison of parametric descriptions of the stress-strain
curve, and distorted yield surface in σ–

√
3τ space with experimental data. Significant features

of curves generated by model, e.g., starting point, initial slope, limit value, width etc. are chosen.
Proposed method uses 10 experimentally determined valuesA1, A2, A3, B1, B2, C1, C2, D1, D2, D3.
The system of nonlinear equations, which includes known values A1, . . . , D3 and unknown pa-
rameters a1, a2, κ1, κ2, c, k0 is formulated, and the system is solved in the closed form.
In Figures 6, 7, 8, and 9, graphical interpretation of four experiments is depicted. The first ex-
perimental input, referred to as the A experiment, is the stress-strain diagram. Three parameters
A1, A2 and A3 comes from this experiment, see Figure 6. The second one, referred to as the B
experiment, is the stress-strain diagram with reversion of loading at a certain level εp11,B of plas-
tic strain. Two parameters B1 and B2 are stipulated by this experiment, see Figure 7. The third
one, referred to as the C experiment, is the stress-strain diagram with reversion of loading at a
different level εp11,C of plastic strain. Other two parameters, C1 and C2, are determined by this
virtual experiment, see Figure 8. Finally, the fourth experiment referred as the D experiment, is
done. Three parameters D1, D2, and D3, are determined from experimentally detected distorted
yield surface, see Figure 9. In sum, four experiments named A, B, C and D are necessary to
obtain input data for identification method.
The stress-strain curve analytical model is given by Equation (21). Comparison of initial value
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of the stress-strain curve generated by model with experimentally determined one yields

A1 = σ11(ε
p
11)
∣∣
εp11=0

= σY = k0. (23)

Similarly, the initial slope can be expressed by

A2 =
∂σ11
∂εp11

(εp11)
∣∣
εp11=0

=
1

2
κ1(1− κ2k0) +

1

2

√
3

2
k0a1c+

3

2
a1, (24)

and limit value of the stress-strain curve

A3 = lim
εp11→+∞

σ11(ε
p
11) =

1

κ2

1√
1− c

a2

+

√
3

2

1

a2
. (25)

From Equation (21), comparison of the yield stress in tensile direction (⊕) at a certain (εp11,B)
level of plastic deformation with an experimental value yields

B1 = σ11(ε
p
11,B)⊕ =

k(εp11,B)√
1− α11(ε

p
11,B)c

√
3

2

+
3

2
α11(ε

p
11,B). (26)
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Similarly, the yield stress in the opposite direction (	) at the same (εp11,B) level of plastic defor-
mation yields

B2 = σ11(ε
p
11,B)	 = −

k(εp11,B)√
1 + α11(ε

p
11,B)c

√
3

2

+
3

2
α11(ε

p
11,B). (27)

Following parametric expressions for the C experiment are the same as in the case of B experi-
ment

C1 = σ11(ε
p
11,C)⊕ =

k(εp11,C)√
1− α11(ε

p
11,C)c

√
3

2

+
3

2
α11(ε

p
11,C), (28)

C2 = σ11(ε
p
11,C)	 = −

k(εp11,C)√
1 + α11(ε

p
11,C)c

√
3

2

+
3

2
α11(ε

p
11,C). (29)

Regarding the parametric description of the D experiment, the distorted yield surface in σ–
√

3τ
space is shown in Figure 9. As significant points, the left, the right, and the upper peak are
chosen. This distorted surface is determined by Equation (22). The analysis of Equation (22)
implies that the left and the right peak of the distorted yield surface in σ–

√
3τ space may be

expressed as

D1 =
k(εp11,D)√

1− α11(ε
p
11,D)c

√
3

2

+
3

2
α11(ε

p
11,D) (30)

and

D2 = −
k(εp11,D)√

1 + α11(ε
p
11,D)c

√
3

2

+
3

2
α11(ε

p
11,D). (31)

This expression is possible if one declares
√

3τ = 0 in Equation (22). Consequently, the upper
peak can be defined as a maximum of implicit function f from Equation (22). Using theorem
related to the implicit function (derivation of implicit function), one may obtain the upper peak
value

D3 =
√

2 k(εp11,D)

√
1−

√
1− 3

2
α2
11(ε

p
11,D) c2√

3
2
α11(ε

p
11,D) c

. (32)

The calibration procedure may be summarized as follows.
First, the k0 parameter obeys Equation (23) stated in the A experiment subsection. One can write

k0 = A1. (33)
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Second, the c parameter obeys Equations (30), (31), and (32) stated in the D experiment. This
system can be solved analytically. The solution for the c variable is

c =
3 ·
√

(D1 −D2)(D1 −D2 − 2D3)

(D1 −D2 −D3)
[
D1 +D2 −

√
(D1 −D2)(D1 −D2 − 2D3)

] . (34)

Third, to evaluate the a2 parameter, two values of backstress, α11(ε
p
11,B) and α11(ε

p
11,C), flow

from Equations (26), (27), (28), and Equation (29). The system (26), (27) forms the cubic equa-
tion

Aα3
11,B +Bα2

11,B + Cα11,B +D = 0, (35)

which

A =
9

2

√
3

2
c , B = −3

√
3

2
c(B1 +B2) , (36)

C =

√
3

2
c(B2

1 +B2
2) + 3(B1 −B2) , D = −(B2

1 −B2
2) , (37)

where the discriminant may be rewritten as

∆ = 18ABCD − 4B3D +B2C2 − 4AC3 − 27A2D2. (38)

It can be easily shown that for B2 < 0, i.e., if the plastic deformation in the reversed direction
occurs in the compressive state, not in tensile one, ∆ < 0 and this equation has the only one
real solution (root). Moreover, this solution can be expressed as

α11,B =− B

3A

− 1

3A
3

√
1

2

[
2B3 − 9ABC + 27A2D +

√
−27A2∆

]
− 1

3A
3

√
1

2

[
2B3 − 9ABC + 27A2D −

√
−27A2∆

]
,

(39)

and similarly for the term α11,C . At this moment, Equation (18) with the initial condition α11,0 =
0 can be rewritten as

a1 = −
√

2

3

1

a2ε
p
11,B

ln

(
1−

√
3

2
α11,Ba2

)
(40)

for the εp11,B level of reversion and

a1 = −
√

2

3

1

a2ε
p
11,C

ln

(
1−

√
3

2
α11,Ca2

)
. (41)

for the εp11,C level of reversion. After some algebra, two equations yield(
1−

√
3

2
α11,Ba2

)εp11,C/ε
p
11,B

+

√
3

2
α11,Ca2 − 1 = 0. (42)
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If the εp11,C/ε
p
11,B term equals 2, the previous relation forms a quadratic equation and its solution

is

a2 =

√
2

3

2α11,B − α11,C

α2
11,B

. (43)

This of course brings some restriction to the experiment.
Four, the a1 parameter flows from Equation (40).
Five, the κ2 parameter flows from Equation (25), which may be expressed by

κ2 =
1√

1− c

a2
·
(
A3 −

√
3

2

1

a2

) . (44)

Finally, κ1 parameter flows from Equation (24), which may be expressed as

κ1 =
2A2 −

√
3

2
k0a1c− 3a1

1− κ2k0
. (45)

5. Verification of Identification Method

In this section, usage of the identification method is demonstrated. Since no complex experi-
mental data are available, virtual experimental data are used as inputs.

c 0.009 MPa−1

a1 4 000 MPa

a2 0.01 MPa−1

κ1 10 000 MPa

κ2 0.004 MPa−1

k0 400 MPa

c 0.0114 MPa−1

a1 3 504 MPa

a2 0.0122 MPa−1

κ1 8 701 MPa

κ2 0.0046 MPa−1

k0 412 MPa

c 27 %

a1 14 %

a2 13 %

κ1 13 %

κ2 15 %

k0 3 %

Table 1: set up
parameters

Table 2: identified
parameters

Table 3: error of
identification

First, a set of artificial material parameters was chosen, see Table 1. Note that for specified pa-
rameters, thermodynamic & convexity condition expressed by Inequality (12) is fulfilled. Scripts
for numerical simulation of requested experiments, i.e., experiment A, B, C and D, were coded
in Matlab. These virtual experiments were performed and interpreted graphically. Based on
these graphs, parameters A1, . . . , D3 were read and used to identify the model’s parameters.
The identified parameters are shown in Table 2, error of identification can be seen in Table 3.
Moreover, comparison of model’s behavior for ‘set up’ and ‘identified’ material parameters in
terms of stress-strain curve and distorted yield surface is plotted in Figure 10 and Figure 11,
respectively.
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Figure 10: Comparison of set up and iden-
tified stress-strain curve.

Figure 11: Comparison of set up and iden-
tified distorted yield surface.

6. Conclusions

Modern experiments show that plastic deformation of many metals causes anisotropy in plastic
behavior. This anisotropy is manifested by distortion of the yield surface in the direction of load.
In order to supply phenomenological description this effect, Feigenbaum and Dafalias (2007)
proposed model based on the fourth order anisotropic tensor. This model is complemented by
three simplified versions, where the simplest one is referred to as the α-model with constant
distortional parameter. This model includes set of six material parameters k0, a1, a2, κ1, κ2 and
c that must be identified from experimental data.
The identification method proposed in this paper is based on the comparison of experimentally
obtained stress-strain curves and a distorted yield surface curve in σ–

√
3τ space with analytical

formulas of these curves. In sum, four experiments are necessary to be performed. Each of the
discussed curves has significant features, e.g., start point, initial slope, width, extreme, which
can be expressed analytically using model’s parameters. Thus, ten experimentally determined
parameters A1, A2, A3, B1, B2, C1, C2, D1, D2, and D3 are used for compilation of the system
of ten nonlinear equations for six unknown parameters k0, a1, a2, κ1, κ2, and c. This system can
be solved in a closed-form, i.e. explicit expressions for each of unknown parameters.
Identification method was tested. Due to the absence of complex experimental data, virtual ex-
periments are done. At first, a set of admissible parameters is proposed. Based on these param-
eters, numerical calculations in Matlab software were done. Using these virtual experimental
data, the identification procedure was performed.
The proposed identification method seems to be applicable. Although maximum error in de-
termination of parameters reached almost 30 %, see Table 3, the error does not cause a large
deviation of either stress-strain curves of distorted yield surfaces. These errors may be caused
by the nonlinear behavior of the model, and they are related to its sensitivity.
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Plešek, J., Feigenbaum, H.P., Dafalias. Y.F. (2010). Convexity of yield surface with directional
distortional hardening rules. J. Eng. Mech., 136, 477–484.

Wu, H.C.; Yeh, W. (1991). On the experimental determination of yield and some results of
annealed 304 stainless steel. Int. J. Plast., 7, 803–826.

437




