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Abstract: The aim of this paper is to evaluate efficiency of different approaches to parallelization of sparse 

matrix assembly using OpenMP. The OpenMP platform is an Application Program Interface (API) for multi-

platform shared-memory parallel programming in C/C++ and Fortran. The paper shows that parallelization 

can efficiently use modern available hardware, significantly reducing the needed computation time. 
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1. Introduction 

The development in computer hardware in last decades shows enormous progress, enabled by the 

introduction of parallel computers. Nowadays, the parallel technology is available even on desktop PC 

due to widespread use of multicore chips. The rapid development in hardware is, however, not 

accompanied by corresponding development in software technology. To fully utilize the potential of 

modern hardware, new algorithms and techniques have to be developed.  

The aim of the paper is to study different approaches to parallelization of sparse matrix assemble 

operation using shared memory programming model using OpenMP library.  The study has been done in 

OOFEM, which is a free finite element code with object oriented architecture for solving mechanical, 

transport and fluid mechanics problems (Patzak, 2002).  

We focused our attention on sparse matrix assembly operation. During this phase, the individual 

characteristic matrices of individual elements are evaluated and assembled into a global problem matrix 

using element code numbers. This operation can be relatively demanding, especially, when nonlinear 

problems are taken into account. The parallelization strategy is based on decomposition of the total work 

into parts assigned to individual computing nodes. In the present context, the serial loop over all elements 

is split into disjoint parts assigned to individual computing nodes. The individual element matrices are 

computed in parallel on individual nodes and then assembled into global stiffness matrix, which is shared 

between individual nodes (shared memory). It is necessary to ensure, that multiple threads do not update 

the same value in the sparse matrix, as this will lead to unpredictable and incorrect results. The OpenMP 
provides different mechanisms that can be used to ensure consistency when accessing and updating 

shared memory. In this paper, we discuss the individual possibilities and compare their efficiency. 

The paper is organized as follows. In Section 2 we briefly explain the assembly of the stiffness matrix and 

OpenMP API constructs which we use in Section 2. Results are shown and discussed in Section 3. 

Finally, we conclude the paper in Section 4. 

2. Forming Stiffness Matrix with the Use of Parallel Directives  

The typical (serial) implementation of sparse matrix assembly consists of loop over elements. Inside this 

loop, the individual element matrices are evaluated and assembled into a global matrix. The mapping 

between element local degrees of freedom and corresponding global degrees of freedom is described by 

code numbers. The individual values in element matrices are added to the corresponding global matrix 

entry, which row and column indices are determined using the element code numbers, see Tab. 1. 
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Tab. 1: Prototype code for serial sparse matrix assembly. 

 

 

 

 

 

 

 

2.1. Application of OpenMP platform 

The OpenMP parallel constructs allow relatively straightforward parallelization of serial code, by 

providing construct enabling to parallelize the for-loops. This is achieved by marking such loop by a 

special compiler pragmas as parallel loop. The rest is done almost automatically by a compiler, which 

splits the loop into parts that are then assigned to individual threads of execution. The user can adjust 

certain parameters that affect the work assignment (static or dynamic), and the scope (local or shared) of 

variables inside the loop. In order to achieve the best scalability, the amount of serial code must be 

reduced to profit from parallel execution. It is therefore natural to parallelize the top level loop over 

individual elements in assembly operation. The parallel OpenMP loop construct allows to mark variables 

inside the loop as shared or private variables. Shared variables are shared among the individual 

computing nodes, which means that the data are visible and accessible by all threads simultaneously. On 

the other hand, the private variables are private to each thread and therefore each thread will have its own 

copy and use it as a temporary variable. The elements matrices and code number vectors were marked as 

private.  

The consistency in accessing and updating shared data can be achieved by a number of different ways in 

OpenMP. The following approaches have been considered: 

A1. The localization of element stiffness matrix is enclosed in critical section. The critical section 

ensures that the section can be processed by only a single thread in time.  

A2. Only the update operation of global stiffness matrix entry enclosed in critical section.  

A3. The update operation of global matrix entry marked as atomic. Atomic directive ensures that the 

memory update is atomic. A compiler might use special hardware instructions for better 

performance than when using critical section. 

A4. The consistency ensured using lock or semaphore that lock particular part of code. When the lock 

is activated the code block which is locked can be executed by only one thread at a time that 

owns the lock. Single lock has been used. 

A5. The consistency ensured using multiple locks. In this approach, the global matrix is divided in 

blocks, corresponding to a range of matrix rows (the number of blocks is a parameter) with 

dedicated lock. This approach does not locks the whole matrix for a single thread, it locks only 

specific block, so that the others threads can perform update in other rows.  

Tab. 2: Prototype code for A1, A2 and A3 strategies. 
 

#pragma opm parallel for 
For elem=1, nelem 
  Ke = computeElementMatrix(elem) 
  Loc = geveElementCodeNumbers(elem) 
  #pragma omp critical (A1) 
  For i=1, K.rows 
    For j=1, K.columns 
      #pragma omp critical (A2) 
      K(loc(i), loc(j)) += Ke (i, j) 
    End 
  End 

End 

 

#pragma opm parallel for 
For elem=1, nelem 
    Ke = computeElementMatrix(elem) 
    Loc= geveElementCodeNumbers(elem) 
    For i=1, K.rows 
      For j=1, K.columns 
        #pragma omp atomic 
        K(loc(i), loc(j)) += Ke (i,j) 
       End 
    End 
End 

A1/A2: Sparse assembly with critical section A3: Sparse assembly with atomic section 

For elem=1, nelem 
    Ke = computeElementMatrix(elem) 
    Loc = geveElementCodeNumbers(elem) 
    For i=1, K.rows 
      For j=1, K.columns 
         K(loc(i), loc(j)) += Ke (i, j) 
       End 
    End 
End 
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Tab. 3: Prototype code for A4 and A5 strategies. 
 

omp_lock_t writelock; 
OMP_INIT_LOCK(&writelock); 
 
#pragma opm parallel for 
For elem=1, nelem 
 Ke = computeElementMatrix(elem) 
 Loc = geveElementCodeNumbers(elem) 
 For i=1, K.rows 
  For j=1, K.columns 
    OMP_SET_LOCK(writelock); 
    K(loc(i), loc(j)) += Ke (i, j) 
    OMP_UNSET_LOCK(writelock); 
  End 
 End 

End 
OMP_DESTROY_LOCK(&writelock); 

 

 

#define NBLOCKS 10 
omp_lock_t writelock[NBLOCKS] 
For i=1, NBLOCKS 
  OMP_INIT_LOCK(&writelock[i]) 
End 
// block size; note integer division 
blockSize = K.rows/NBLOCKS  
#pragma opm parallel for 
For elem=1, nelem 
 Ke = computeElementMatrix(elem) 
 Loc = geveElementCodeNumbers(elem) 
 For i=1, K.rows 
   For j=1, K.columns 
     Bi = loc(i)/blockSize 
     OMP_SET_LOCK(writelock[bi]) 
     K(loc(i), loc(j)) += Ke (i, j) 
     OMP_UNSET_LOCK(writelock[bi]); 
   End 
  End 
End 

A4: Sparse assembly with single lock A5: Sparse assembly with block locks 

3. Testing Example, Results and Discussion 

The individual approaches have been evaluated using a 3D finite element model of nuclear containment 

reactor. The mesh consists of 87320 nodes and 959700 tetrahedral elements with linear interpolation. The 

total number of equations was 260322. The stiffness matrix has been stored in compressed row sparse 

format. In this storage format, on floating-point array is needed to store actual nonzero values as they are 

traversed in a row-wise fashion. The other two integers arrays store the column indexes of the elements in 

the vector of values and the second stores the locations of those values that start a row.  Instead of storing 

n
2
 elements (where n is the number of equations), we need only 2nnz + n + 1 storage locations, where 

nnz is number of nonzero entries. 

The four described approaches (A1-A5) have been implemented and their efficiency compared on test 

example. The evaluations have been done on a desktop PC with 8 cores. The runtime, in terms of wall 

clock time, has been recorded for each strategy for varying number of processors. In the strategy A5, with 

multiple locks, each one for dedicated row blocks, the total number of blocks has been also changed.  

In Table 4, the execution times for strategies A1-A4 are given. It can be clearly observed, that time 

needed for the execution is reduced with increasing number of threads. However, the gain is non-

proportional, due to the overhead associated with resource sharing (data bus), data consistency (locking, 

critical sections), and thread management (creation, termination). The more threads are used, the less is 

the gained speed up. The best speedups and also absolute times are observed for A1 strategy, where the 

whole local matrix assembly block was contained within a critical section. Comparing to the A2, where 

only the update of global entry was in the critical section, it is clear, that the overhead associated with 

critical section is higher than possible gain, when the loops over local entries can be done in parallel. The 

strategy A5 with multiple locks for dedicated row blocks is efficient than the strategies A3 and A4 relying 

on simple lock strategy. The results show that there are significant differences between individual 

strategies. In general, the optimal strategy is problem dependent and must be evaluated on several 

examples. However, with each strategy one can achieve better performance compared to serial code.  

4. Conclusions  

The presented work evaluates the different strategies for parallel assembly of sparse matrix using 

OpenMP programming model. The individual strategies are based on critical sections, atomic constructs, 

and locks used to lock the whole matrix or its section. The strategies are compared on forming sparse 

stiffness matrix of a large scale engineering problem. The results show that using parallelization the 

computation time can be significantly reduced. The overhead costs of individual approaches can have a 

significant impact on overall computation time. 
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Tab. 4: Execution times for strategies A1 – A5. 

number of threads

1 2 4 6 8

A1 4.531 2.750 1.789 1.640 1.608

A2 5.019 3.124 5.553 7.487 8.488

A3 5.109 3.131 5.643 7.501 8.528

A4 5.002 3.120 5.553 7.417 8.345

A5 – NBLOCKS 50 5,134 3.175 2.539 2.482 2.451

A5 – NBLOCKS 100 5.152 3.159 2.429 2.383 2.359

A5 – NBLOCKS 500 5.155 3.151 2.306 2.175 2.131

A5 – NBLOCKS 1000 5.150 3.1722 2.299 2.172 2.126

execution times [s]
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