

20

th
 International Conference

ENGINEERING MECHANICS 2014

Svratka, Czech Republic, 12 – 15 May 2014

ON PARALLELIZATION OF STIFFNES MATRIX ASSEMBLY

M. Bošanský
*
, B. Patzák

**

Abstract: The aim of this paper is to evaluate efficiency of different approaches to parallelization of sparse

matrix assembly using OpenMP. The OpenMP platform is an Application Program Interface (API) for multi-

platform shared-memory parallel programming in C/C++ and Fortran. The paper shows that parallelization

can efficiently use modern available hardware, significantly reducing the needed computation time.

Keywords: Assembly operation, Parallel efficiency.

1. Introduction

The development in computer hardware in last decades shows enormous progress, enabled by the

introduction of parallel computers. Nowadays, the parallel technology is available even on desktop PC

due to widespread use of multicore chips. The rapid development in hardware is, however, not

accompanied by corresponding development in software technology. To fully utilize the potential of

modern hardware, new algorithms and techniques have to be developed.

The aim of the paper is to study different approaches to parallelization of sparse matrix assemble

operation using shared memory programming model using OpenMP library. The study has been done in

OOFEM, which is a free finite element code with object oriented architecture for solving mechanical,

transport and fluid mechanics problems (Patzak, 2002).

We focused our attention on sparse matrix assembly operation. During this phase, the individual

characteristic matrices of individual elements are evaluated and assembled into a global problem matrix

using element code numbers. This operation can be relatively demanding, especially, when nonlinear

problems are taken into account. The parallelization strategy is based on decomposition of the total work

into parts assigned to individual computing nodes. In the present context, the serial loop over all elements

is split into disjoint parts assigned to individual computing nodes. The individual element matrices are

computed in parallel on individual nodes and then assembled into global stiffness matrix, which is shared

between individual nodes (shared memory). It is necessary to ensure, that multiple threads do not update

the same value in the sparse matrix, as this will lead to unpredictable and incorrect results. The OpenMP
provides different mechanisms that can be used to ensure consistency when accessing and updating

shared memory. In this paper, we discuss the individual possibilities and compare their efficiency.

The paper is organized as follows. In Section 2 we briefly explain the assembly of the stiffness matrix and

OpenMP API constructs which we use in Section 2. Results are shown and discussed in Section 3.

Finally, we conclude the paper in Section 4.

2. Forming Stiffness Matrix with the Use of Parallel Directives

The typical (serial) implementation of sparse matrix assembly consists of loop over elements. Inside this

loop, the individual element matrices are evaluated and assembled into a global matrix. The mapping

between element local degrees of freedom and corresponding global degrees of freedom is described by

code numbers. The individual values in element matrices are added to the corresponding global matrix

entry, which row and column indices are determined using the element code numbers, see Tab. 1.

* Ing. Michal Bošanský, Department of Mechanics, Faculty of Civil Engineering, CTU in Prague, Thákurova 7/2077; 166 29,

Prague; CZ, michal.bosansky@fsv.cvut.cz
** Prof. Bořek Patzák, Department of Mechanics, Faculty of Civil Engineering, CTU in Prague, Thákurova 7/2077; 166 29,

Prague; CZ, Borek.Patzak@fsv.cvut.cz

 3

Tab. 1: Prototype code for serial sparse matrix assembly.

2.1. Application of OpenMP platform

The OpenMP parallel constructs allow relatively straightforward parallelization of serial code, by

providing construct enabling to parallelize the for-loops. This is achieved by marking such loop by a

special compiler pragmas as parallel loop. The rest is done almost automatically by a compiler, which

splits the loop into parts that are then assigned to individual threads of execution. The user can adjust

certain parameters that affect the work assignment (static or dynamic), and the scope (local or shared) of

variables inside the loop. In order to achieve the best scalability, the amount of serial code must be

reduced to profit from parallel execution. It is therefore natural to parallelize the top level loop over

individual elements in assembly operation. The parallel OpenMP loop construct allows to mark variables

inside the loop as shared or private variables. Shared variables are shared among the individual

computing nodes, which means that the data are visible and accessible by all threads simultaneously. On

the other hand, the private variables are private to each thread and therefore each thread will have its own

copy and use it as a temporary variable. The elements matrices and code number vectors were marked as

private.

The consistency in accessing and updating shared data can be achieved by a number of different ways in

OpenMP. The following approaches have been considered:

A1. The localization of element stiffness matrix is enclosed in critical section. The critical section

ensures that the section can be processed by only a single thread in time.

A2. Only the update operation of global stiffness matrix entry enclosed in critical section.

A3. The update operation of global matrix entry marked as atomic. Atomic directive ensures that the

memory update is atomic. A compiler might use special hardware instructions for better

performance than when using critical section.

A4. The consistency ensured using lock or semaphore that lock particular part of code. When the lock

is activated the code block which is locked can be executed by only one thread at a time that

owns the lock. Single lock has been used.

A5. The consistency ensured using multiple locks. In this approach, the global matrix is divided in

blocks, corresponding to a range of matrix rows (the number of blocks is a parameter) with

dedicated lock. This approach does not locks the whole matrix for a single thread, it locks only

specific block, so that the others threads can perform update in other rows.

Tab. 2: Prototype code for A1, A2 and A3 strategies.

#pragma opm parallel for
For elem=1, nelem
 Ke = computeElementMatrix(elem)
 Loc = geveElementCodeNumbers(elem)
 #pragma omp critical (A1)
 For i=1, K.rows
 For j=1, K.columns
 #pragma omp critical (A2)
 K(loc(i), loc(j)) += Ke (i, j)
 End
 End

End

#pragma opm parallel for
For elem=1, nelem
 Ke = computeElementMatrix(elem)
 Loc= geveElementCodeNumbers(elem)
 For i=1, K.rows
 For j=1, K.columns
 #pragma omp atomic
 K(loc(i), loc(j)) += Ke (i,j)
 End
 End
End

A1/A2: Sparse assembly with critical section A3: Sparse assembly with atomic section

For elem=1, nelem
 Ke = computeElementMatrix(elem)
 Loc = geveElementCodeNumbers(elem)
 For i=1, K.rows
 For j=1, K.columns
 K(loc(i), loc(j)) += Ke (i, j)
 End
 End
End

 4

Tab. 3: Prototype code for A4 and A5 strategies.

omp_lock_t writelock;
OMP_INIT_LOCK(&writelock);

#pragma opm parallel for
For elem=1, nelem
 Ke = computeElementMatrix(elem)
 Loc = geveElementCodeNumbers(elem)
 For i=1, K.rows
 For j=1, K.columns
 OMP_SET_LOCK(writelock);
 K(loc(i), loc(j)) += Ke (i, j)
 OMP_UNSET_LOCK(writelock);
 End
 End

End
OMP_DESTROY_LOCK(&writelock);

#define NBLOCKS 10
omp_lock_t writelock[NBLOCKS]
For i=1, NBLOCKS
 OMP_INIT_LOCK(&writelock[i])
End
// block size; note integer division
blockSize = K.rows/NBLOCKS
#pragma opm parallel for
For elem=1, nelem
 Ke = computeElementMatrix(elem)
 Loc = geveElementCodeNumbers(elem)
 For i=1, K.rows
 For j=1, K.columns
 Bi = loc(i)/blockSize
 OMP_SET_LOCK(writelock[bi])
 K(loc(i), loc(j)) += Ke (i, j)
 OMP_UNSET_LOCK(writelock[bi]);
 End
 End
End

A4: Sparse assembly with single lock A5: Sparse assembly with block locks

3. Testing Example, Results and Discussion

The individual approaches have been evaluated using a 3D finite element model of nuclear containment

reactor. The mesh consists of 87320 nodes and 959700 tetrahedral elements with linear interpolation. The

total number of equations was 260322. The stiffness matrix has been stored in compressed row sparse

format. In this storage format, on floating-point array is needed to store actual nonzero values as they are

traversed in a row-wise fashion. The other two integers arrays store the column indexes of the elements in

the vector of values and the second stores the locations of those values that start a row. Instead of storing

n
2
 elements (where n is the number of equations), we need only 2nnz + n + 1 storage locations, where

nnz is number of nonzero entries.

The four described approaches (A1-A5) have been implemented and their efficiency compared on test

example. The evaluations have been done on a desktop PC with 8 cores. The runtime, in terms of wall

clock time, has been recorded for each strategy for varying number of processors. In the strategy A5, with

multiple locks, each one for dedicated row blocks, the total number of blocks has been also changed.

In Table 4, the execution times for strategies A1-A4 are given. It can be clearly observed, that time

needed for the execution is reduced with increasing number of threads. However, the gain is non-

proportional, due to the overhead associated with resource sharing (data bus), data consistency (locking,

critical sections), and thread management (creation, termination). The more threads are used, the less is

the gained speed up. The best speedups and also absolute times are observed for A1 strategy, where the

whole local matrix assembly block was contained within a critical section. Comparing to the A2, where

only the update of global entry was in the critical section, it is clear, that the overhead associated with

critical section is higher than possible gain, when the loops over local entries can be done in parallel. The

strategy A5 with multiple locks for dedicated row blocks is efficient than the strategies A3 and A4 relying

on simple lock strategy. The results show that there are significant differences between individual

strategies. In general, the optimal strategy is problem dependent and must be evaluated on several

examples. However, with each strategy one can achieve better performance compared to serial code.

4. Conclusions

The presented work evaluates the different strategies for parallel assembly of sparse matrix using

OpenMP programming model. The individual strategies are based on critical sections, atomic constructs,

and locks used to lock the whole matrix or its section. The strategies are compared on forming sparse

stiffness matrix of a large scale engineering problem. The results show that using parallelization the

computation time can be significantly reduced. The overhead costs of individual approaches can have a

significant impact on overall computation time.

 5

Tab. 4: Execution times for strategies A1 – A5.

number of threads

1 2 4 6 8

A1 4.531 2.750 1.789 1.640 1.608

A2 5.019 3.124 5.553 7.487 8.488

A3 5.109 3.131 5.643 7.501 8.528

A4 5.002 3.120 5.553 7.417 8.345

A5 – NBLOCKS 50 5,134 3.175 2.539 2.482 2.451

A5 – NBLOCKS 100 5.152 3.159 2.429 2.383 2.359

A5 – NBLOCKS 500 5.155 3.151 2.306 2.175 2.131

A5 – NBLOCKS 1000 5.150 3.1722 2.299 2.172 2.126

execution times [s]

Acknowledgement

This work was supported by the Grant Agency of the Czech Technical University in Prague, grant

No. SGS OHK1-089/14 “Advanced algorithms for numerical modeling in mechanics of structures and

materials”.

References

Patzak, B. (2002) OOFEM project home page, In: http://www.oofem.org [online], 2002-05-01 [cited 2014-26-1].

Available from: http://www.oofem.org/en/documentation/manual.html.

Chapman, B., Jost, G., Pas, R. V. D. foreword Kuck, D. J. (2008) Using OpenMP – portable shared memory parallel

programming The MIT press, Cambridge Massachusetts, London, England: ISBN-13: 978-0-262-53302-7.

Stroustrup, B. (1997) The C++ programming language Third edition. Murray Hill, New Jersey: 1997 by AT T.

ISBN 0-201 885954-4.

