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Abstract: Meta-models (or surrogate models, formerly response surfaces) are getting popular in 

engineering designs. They are used to simulate the behaviour of structures with less computational demands 

than the original model (e.g. finite element models). It is still necessary to evaluate this expensive original 

model few times in some specified points called Design of Experiments (DoE). The first DoE is usually just 

space-filling to cover up the whole design space and the meta-model built with an initial DoE is therefore not 

very accurate everywhere. Other points are added to the meta-model to improve accuracy at important 

regions. In this paper, various updates of meta-models are reviewed from different points of view. 

Unfortunately, there is a distinction between updates even in reliability assessment and reliability-based 

design optimization research areas.  

Keywords:  Surrogate models, Adaptive update, Reliability-based design optimization, Design of 

Experiments. 

1. Introduction 

Realistic simulations of a structural behaviour require usage of complex and very detailed models. If 

those models are used for an engineering design, it is inevitable to enumerate them several times. These 

so-called true functions or performance functions (based on e.g. a finite element method) can be quite 

expensive to evaluate several times consecutively. If even one evaluation of the true function is very time 

consuming, the optimization used for the engineering design can last for ages. To speed up the design 

process, the true model can be replaced by some model of the original model that has a very similar 

behaviour; however, it is less time consuming. Those models of models are called meta-models or 

surrogate models and require just few evaluations of the costly true function. Those evaluations are then 

used to create the meta-model. Proper locations where to evaluate the true function (called support points) 

have to be chosen properly usually by a Design of experiments with support points usually uniformly 

distributed in the whole design space. It is better to start with just a couple of support points and then find 

the correct positions where to add other support points to improve the meta-model mimicking the true 

model (called updating). Initial meta-models do not have the same accuracy as the true models 

particularly in locations that are most interesting for an engineering design such as the vicinity of the 

border between the safe and the failure domain called a limit state. Adaptive updating of meta-models can 

make the meta-model more accurate in those interesting locations. 

2. Meta-Models and Updates 

Meta-models can be divided into two fundamental parts: non-interpolating models minimizing sum of 

squares errors from some predetermined functional form (e.g. polynomial surfaces) and interpolating 

models intersecting all support points based on the idea of linear combination of some basis functions. 

Interpolating models can contain fixed basis functions (e.g. thin-plate splines or multiquadrics) or basis 

functions to be tuned, e.g. Radial Basis Functions Networks or Kriging (Jones, 2001). If the interpolating 

meta-model is trained only with few support points, it is too stiff to approximate the original behaviour of 

the true function and conversely, fitting the true function with plenty of points makes the model too 
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flexible and causes over-fitting (Forrester et al., 2008). In addition, Kriging allows computing the mean 

squared error (MSE) of any predicted outcome, which is frequently used for the meta-model updates. If 

any other meta-model type is more suitable for a specific problem, the generic updates have to be utilized.  

2.1. Update for reliability assessment 

 The type of a meta-model update depends on a field of the model application. Despite appearing similar, 

a reliability assessment and a reliability optimization require a different updating approach. Consider the 

evaluation of the failure probability pf in an n-dimensional space of random variables X1, …, Xn as 

a multiple integral of a joint probability density function fX (x) over the failure domain g(X) ≤ 0. In the 

standard normal space, the Hasofer-Lind reliability index β is then defined as an inverse cumulative 

distribution function of the standard normal distribution β = Φ
-1

(1-pf). It can be geometrically understood 

as the shortest connecting line between the origin and the most probable failure point (MPFP). To 

improve the behaviour of the meta-model for the reliability assessment, the update is most essential 

around this MPFP, because this region contributes most to the total failure probability. Bucher & 

Bourgund (1990) came with the idea to update the response surface utilizing second-order polynomials.  

2.2. Updates for reliability-based design optimization 

One possible approach to define the reliability-based design optimization is 
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The cost function c(v, d) is to be minimized with optimal values of design variables arranged in d vector. 

Design variables are chosen from a design space D. Uncertain parameters are arranged in vector v. ne is 

the total number of deterministic constraints defined by hi(d), pf,j(v, d) stands for a probability of 

occurrence of j
th
 event and pf,j

tol
 is a prescribed tolerable threshold. np us the total number of probabilistic 

constraints. Design variables usually represent mean values of random variables and their optimal 

combination coincide with the minimum of the cost function under the fulfilled constraints.  

Meta-models can replace both the cost function and the deterministic and probabilistic constraints. 

Nevertheless, there is a difference in their consecutive update. If the meta-model is used to compute the 

values of the objective function, an improvement of the meta-model is necessary in the vicinity of the 

best-so-far optimum found so as to allow for a convergence to the global optimum. Several strategies are 

used, namely minimizing a response surface (Jones, 2001), maximizing the probability of improvement 

(Kushner, 1964; Jones, 2001), maximizing the expected improvement (Jones et al., 1998) or goal seeking 

(Jones, 2001). On the other hand, if a meta-model is utilized for the constraint replacement, some contour 

(e.g. a limit state) has to be approximated. Algorithms as the Efficient Global Reliability Analysis 

(EGRA) (Bichon et al., 2008), modified Active Kriging + Monte Carlo Simulation (Echard et al., 2011) 

or Meta-model-based importance sampling (Dubourg, 2011) can be effectively employed. The latter 

algorithms utilize some special meta-models’ features that are not available for all types of meta-models. 

The generic update can be carried out through placing new support points in a vicinity of the limit state 

still ensuring the uniform space-filling criterion e.g. by the MiniMax metric which leads to the multi-

objective optimization (Myšáková et al., 2013). Although the replacement of probabilistic constraint 

seems to be the similar problem as in the reliability assessment, the layout is different due to its repeated 

evaluation for different designs. The limit state function can be understood as a collection of the MPFPs 

for different design variables combinations and thus the meta-model updating only in the one MPFP 

vicinity is not sufficient, but the vicinity of the whole contour needs to be updated. 

2.2.1. Updates for meta-models replacing an objective function in RBDO 

Minimizing a response surface approach (Jones, 2001) is independent of a used meta-model type. New 

support points are added sequentially into the best-so-far optimum found on the meta-model. In case of 

multi-modal problems, this method can converge prematurely in a local optimum or fail in the worst 

possible case. Additional points in DoE for the non-interpolating meta-models with fixed number of 

degrees of freedom need not help at all and this method can be misleading in finding any optima. The 

interpolating meta-models converge to the local optimum in most cases. To ensure that the local optimum 

is found the local search is carried out in its vicinity. 
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Maximizing the probability of improvement (Kushner, 1964; Jones et al., 1998) utilizes the ability of 

Kriging to compute MSE of a prediction. An uncertainty in the prediction is lesser (low MSE) in areas 

with higher concentration of support points and reversely. The output y
*
 at the point x

*
 not identical with 

any support point is not known, therefore y
*
 can be modelled as a random normal variable Y with a mean 

equal to the Kriging prediction ŷ(x) and standard deviation s equal to the Kriging standard error. For more 

details about Kriging, see e.g. Jones et al. (1998). To find the global optimum, the minimum value ymin of 

the true function evaluated on initial DoE is determined and the probability of improvement is maximized 

across the whole domain of x. The improvement is achieved when ymin is greater than the uncertain output 

Y, thus I = max(ymin – Y, 0) and the probability of improvement P[I(x)] is according to Forrester et al. 

(2008) 
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New support points are sequentially added into the maximum value of P[I(x)] until the P[I(x)] 

approximates zero. P[I(x)] shows the location of the maximum improvement but not its amount. The 

better criterion is therefore the expected improvement function. 

Maximizing the expected improvement function (EIF) (Jones et al., 1998) is based on the idea of the 

probability of improvement. EIF is an expected value of P[I(x)] defined as 

 








 








 


s

yy
s

s

yy
yyxIE

ˆˆ
)ˆ()]([ minmin

min 

.  (3) 

The maximum value of EIF localizes the next point that should be added into the surrogate model to 

make it more accurate. Proposed EIF makes a balance between a local and a global search. The local 

search is focused on an improvement of the local minimum vicinity and the global search concentrates 

primarily on unknown areas exploration where the standard error of the predictor has the maximum value. 

This approach is sequential and maximization of EIF is done repeatedly until the maximum of EIF is 

greater than some prescribed value. The Branch and Bound method used in Jones et al. (1998) for the 

maximization is however quite often too expensive to run to final convergence (Bichon et al., 2008). The 

complete global optimization algorithm is called Efficient Global Optimization (EGO). 

Goal seeking searches for an input (a goal) that corresponds to a specific predefined function value. It is 

based on the maximization of the conditional log-likelihood function by varying inputs and Kriging 

model parameters; see Forrester et al. (2008) for more details.  

2.2.2. Updates for meta-models replacing constraints functions in RBDO 

Bichon et al. (2008) use an adaptive update of Kriging together with an adaptive importance sampling 

(AIS). An update of a meta-model is inspired by Jones et al. (1998). Instead of EIF, Expected Feasibility 

function (EFF) is utilized. Since an improvement of the meta-model is not used for global minimization 

but for the reliability assessment, the bound dividing the domain into the safe and the failure region has to 

be more accurate. An equality constraint for a reliability assessment is defined as G(u) = z where z is 

a threshold value. EFF is therefore integrated over a region z ± ε. Efficient Global Reliability Analysis 

(EGRA) first generates a small number of support points (at least to define the quadratic polynomial) and 

computes true function values in those support points for building the Gaussian process model. Those 

samples are recommended to cover the design space uniformly over the bounds ±5σ. The point that 

maximizes the EFF is located by DIRECT algorithm and the true function is calculated. EFF is 

maximized and support points are added into the meta-model repeatedly until the stopping criterion in the 

form of the prescribed maximum EFF value is not fulfilled. 

Active Kriging + Monte Carlo Simulation (Echard et al., 2011) creates and updates a meta-model only on 

a generated Monte Carlo (MC) population and not on any other points. At the beginning, few support 

points are chosen from the whole MC population by e.g. k-means clustering. Subsequently, support points 

for an update are obtained by minimizing the so-called Learning function on whole MC population, 

which is the ratio of an absolute value of a predicted value by a meta-model to Kriging variance. Since 

the MC population is generated only for one combination of design variables, this method in its 

unmodified version works only for reliability assessment. Nevertheless, several options are available to 

extend it for RBDO. First, a new meta-model can be trained for each combination of design variables 
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proposed by RBD optimizer, however, this approach can be quite time consuming. Second, a meta-model 

is kept for all design variables combinations and just new points from new MC populations are added to 

make the meta-model more precise across the whole design space. Third, the MC population can be 

widen just for the meta-model improvement purposes. 

Meta-model independent update for RBDO not utilizing the feature of the ability to forecast a predictor 

error is not very often used. Myšáková et al. (2013) use a multi-objective optimization for locating 

additional support points regardless of the meta-model type. There are two criteria: first, a new support 

point should be near the limit state that is carried out by minimizing the quadrate of the surrogate limit 

state function. Second, to bring the maximum new information, the point should be far from other points 

as quantified by MiniMax metric. The final Pareto-front is clustered and the best points are added to DoE 

to update the meta-model. This routine is run sequentially until the stopping criterion is fulfilled. 

3. Conclusions  

For a meta-model updating, it is necessary to distinguish what is a purpose of the meta-model. The 

reliability assessment requires an improvement mainly in the vicinity of the most probable point. In the 

reliability-based design optimization, the meta-model can replace an objective function or the constraints 

in the both forms of equality or inequality. In case of an objective function approximation, the global 

optimum should be located and updated. Constraints meta-models require an improvement in the defined 

contour dividing the space into the feasible (or safe) and non-feasible (or failure) domain. If Monte Carlo 

or variance reduction techniques (e.g. Importance sampling or Subset simulation) are utilized for 

a reliability assessment for each combination of design variables in the RBDO procedure, the meta-model 

replacing the true limit state function is more essential unless the objective function is very time 

consuming. A meta-model is one of very few options to solve the problem. However, the outcome is 

highly dependent on the meta-model ability to describe the given problem. Any time, an issue of over-

fitting and/or over-simplification can occur and the quality of the used meta-model must be therefore 

continuously checked. For comparative studies of meta-models’ performance under multiple modelling 

criteria, see e.g. Jin et al. (2001). 
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