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Abstract: In this contribution we present our new approach to obtain or better estimate mechanical fields 

(strain, stress and displacement) inside isotropic infinite body with ellipsoidal-like inclusions. The precise 

solution has been given by J. D. Eshelby (1957) to internal and external points of inclusion domains and 

form the basis of our work. When the Eshelby’s solution is extended to take into account perturbations due to 

the presence of numerous adjacent inclusions (Novák et al., 2012; Oberrecht et al., 2013) the solution given 

for dozens of points is very time demanding. Utilizing Artificial Neural Network (ANN) trained by exact 

Eshelby’s solutions to predict mechanical fields can be achieved considerable speedup at the cost of 

approximate solution. At this state we only focus on prediction of one component of a perturbation strain 

tensor for single ellipsoidal inclusion. 

Keywords:  Micromechanics, Isotropic Ellipsoidal Inclusions, Eshelby’s Solution, Artificial Neural 
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1. Introduction 

In these days, composite materials form an integral part of the world around us. Whether it's a well-

known material or material being just developed, we want to know the most about their properties and 

their behaviour at the macro or micro level. In this paper, we focus on the micro level behaviour of 

composite non-dilute material consisting of isotropic ellipsoidal-like inclusions and isotropic infinite 

matrix. Our main interest is the evaluation of micromechanical fields (strain, stress and displacement) on 

this type of material. 

2. Eshelby’s Solution 

The analytical solution for elastic fields caused by inclusions has been given by J. D. Eshelby (1957). In 

his work Eshelby shows that this problem can be decomposed into exactly two tasks of a known solution  

a)                         b)  

Fig. 1: a) Single inhomogeneity problem; b) Multiple inhomogeneity problem. 
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and then assembled back by making use of the superposition principle. The solution of a single 

inhomogeneity problem, see Fig. 1a, is therefore given as the sum of homogeneous infinite body problem 

and homogeneous inclusion problem, so called perturbation part of mechanical fields (Eshelby, 1957; 

Mura, 1982). In case of multiple inhomogeneity (Fig. 1b), the solution of mechanical field within a body 

with N inclusions is obtained as the sum of N single inclusion tasks scaled by a multiplier associated with 

each inclusion so as to fulfil self-equilibrium as presented in paper by Novák (2008). 

Using these solutions and computer programming the μMECH library (Novák et al., 2012; Oberrecht et 

al., 2013) was created for solving micromechanical fields in materials with single or multiple inclusions. 

But, despite the performance of computers, the solution for thousands of points (no matter if internal or 

external) is very time demanding. Therefore, we came up with the idea of speeding up the process with 

predicting approximate solutions by an Artificial Neural Network (ANN). 

3. Artificial Neural Network 

Artificial Neural Networks (ANN) are computational models based on central nervous systems, especially 

on brain (Gurney, 2002; Haykin, 2009). These models are capable of machine learning and recognizing of 

patterns in given data. ANN consists of many simple processing nodes – so called neurons – 

interconnected into systems that can change their structure during the training (learning) phase. To each 

connection between two neurons is assigned an adaptive value representing synaptic weight of this 

connection. Based on given data and respective results used as an external information flowing through 

the system, these weights are balanced in a way that the output of ANN corresponds to the actual results. 

There are numerous types of ANNs from single-directional systems to complicated multi-directional 

systems with many inputs and nested loops. One specific type of ANN is the feed-forward neural 

network. In this system, neurons are organized into layers where connections among neurons are placed 

only between adjacent layers, as shown in Fig. 2. There are no loops, cycles or feed-back connections. 

 

Fig. 2: Example of feed-forward Artificial Neural Network. 

The most widely used example is the multi-layer perceptron (MLP) with the sigmoid transfer function 

and the gradient descent method of training – so called backpropagation learning algorithm. The power of 

MLPs lies in their ability to approximate nonlinear relations which corresponds to our problem, so when 

speaking about ANN in the following text, the MLP is considered. 

4. Prediction of Eshelby’s Solution 

As described in section 2, the solution for materials with multiple inclusions is decomposed into separate 

solutions, each for every inclusion. Therefore, we assume here only single inclusion in the infinite 

isotropic body. But even so, the solution of mechanical fields depends on many input variables, such as 

load case, Young’s modulus and Poisson’s ratio of the inclusion and matrix, dimensions and rotations of 

the inclusion in space, coordinates of the inclusion centre and coordinates of a point where we want to 

evaluate mechanical fields. 
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4.1. ANN model and samples generation 

For a sake of simplicity, we decided to start with the simplest model where the only variables are 

coordinates of a given point and all the inclusion and matrix parameters are fixed. In such a case, the 

coordinate system of the inclusion coincides with the coordinate system of the applied load case and we 

can limit the domain of point coordinates to only the first octant of the inclusion coordinate system. That 

is because the mechanical fields around inclusion are symmetrical to planes defined by semiaxes of 

inclusion. The centre of the inclusion matches the centre of a used coordinate system. 

To generate uniformly distributed samples of point coordinates, we used software called SPERM 2.0 

(Novák, 2011) based on method of Latin Hypercube Sampling (LHS). In total we generate 10 000 points 

with uniformly distributed coordinates x, y and z in range from 0.0 to 0.5. Other material properties and 

used constants are listed in table 1. As the load case is always the remote unit strain, particular units are 

irrelevant thus it is only a question of scaling. 

 

Tab. 1: Material properties and used constants. 

Properties and constants Infinite matrix Inclusion 

Young modulus 5 50 

Poisson’s ratio 0.25 

Load case remote strain εxx = 1.0 in inclusion centroid 

Semiaxes dimensions / a1 = 0.15; a2 = 0.1; a3 = 0.05 

Euler angles / α = β = γ = 0.0 

4.2. Model training 

For the ANN training phase the reference results are needed. We used the above-mentioned μMECH 

library and for each point solve the perturbation fields. As another part of simplification we decide to 

predict only one element from the results, the perturbation strain εxx. From these results, we create a 

cumulative distribution function (CDF), as we want the results to be in uniform distribution. 

To create and train the ANN we used software called RegNeN 2012 (Regression by Neural Network) 

(Mareš and Kučerová, 2012) which is a software package for computing a regression for given data using 

artificial neural network. During the training phase the neural system itself is created. It is composed from 

three input neurons in the first layer, n neurons in the second so called hidden layer and one output neuron 

in the third layer. Numbers of neurons in hidden layer depend on the self validating process for which the 

software uses so called cross-validation method. 

In this method the samples are divided into m parts from which m-1 parts are used to calibrate the weights 

between neurons and the remaining part is used for validation. Then one neuron is added into hidden 

layer, the process of calibrating is repeated with different m-1 parts and for validation is used the current 

remaining part. This is repeated m-times and finally the ANN with smallest error is saved. 

4.3. Results verification 

In practical use, this is the place when the desired prediction of results takes a turn. Material for which we 

want to know the mechanical fields must be distributed in the same data format as was used in the 

training phase. These simple inputs are forwarded to already trained ANN which in a split of a second 

return predicted results based on previously calibrated synaptic weights. 

But because of the development of this method we are more interested in the accuracy of predicted results 

than the results itself. So we take all of the 10 000 input samples that we used for the ANN training and 

perform the prediction of results. Since we used the CDF values for ANN training, the predicted results 

were also in a scale from 0 to 1. The difference between exact and predicted data in CDF values is shown 

on Fig. 3a. Data on Fig. 3b are the same values only converted back using the inverse CDF. 
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a) b)  

Fig. 3: Comparison of predicted results and exact results in: a) CDF values; b) Original values. 

5. Brief Results 

As can be seen from Fig. 3 the predicted results are distorted with an error which is most evident with the 

outlying data. In the case that the training data set will contain a sufficient representation of these outlying 

values the ANN should be able to better detect correlations for these values and predict better results. So 

we see a possible improvement in the use of a much larger set of training data. 
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