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Abstract: Nonlinear initial value problems (IVPs) for ordinary differential equations are considered. As a 

representative, a cement hydration model is chosen. The model equation depends on a few parameters that 

are to be identified on the basis of hydration-related measurements at a sequence of time points. This is done 

through the minimization of a cost function defined as the sum of squared differences between the measured 

values and the model response at the same time points. To minimize the cost function, a gradient based 

algorithm is used. The gradient of the cost function can be calculated either by numerical differentiation or 

via solving auxiliary initial value problems. The minimization algorithm tends to find a local minimum. 

Therefore, it is run from different starting points to increase the chance of finding the global minimum. 

Algorithms are coded in the Matlab environment, and Matlab IVP solvers as well as Matlab Optimization 

Toolbox and Symbolic Math Toolbox are utilized. The latter makes the derivation of the auxiliary IVPs easy 

and reliable. 
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1. Introduction 

Identification of parameters is a frequent problem in modeling real-world phenomena. In a common 

situation, a phenomenon is observed and its features are quantified through measurements. Next, a 

mathematical model is formulated that, inevitably, depends on parameters that can be general and known 

(as general physical constants, for instance) or rather special and known only approximately. Parameters 

can also determine the basic hypothesis of the mathematical model. As an example, take a possible 

uncertainty in the relationships between quantities involved in the model. These relationships can be 

described by, for instance, linear, quadratic, or exponential mathematical expressions, and the first goal of 

modeling is to identify the classes of dependencies that constitute the model. 

In this paper, we focus on the identification of parameters in initial value problems for ordinary 

differential equations. This subject has been widely studied in the literature. An easily accessible 

introductory material (Munster, 2009) can serve as an appropriate starting point for beginners in the field. 

A more advanced application is the subject of the paper (Babadzanjanz et al., 2003). Let us note that we 

will deal with a problem that is not ill-posed and that can be treated in a straightforward way similar to 

that used in the papers cited above.  

We were motivated by the report (Mareš, 2012), where four parameters of a cement hydration model are 

identified through a neural network approach. The initial value problem is, see (Mareš, 2012), 
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where   is the time dependent degree of hydration,    and   are coefficients related to the cement 

chemical composition,    is the limit value of the hydration degree,   represents the microdiffusion of 

free water through formed hydrates, and C is a constant originating from an expression comprising some 
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physical constants such as the universal gas constant, for instance. The initial condition  ( )    stands 

for the hydration degree at time     that is assumed to be zero though a positive value less than    is 

also possible. The degree of hydration is measured at time points   , in this way, values   , i = 1, 2, …, n, 

are produced. To take account of possibly different importance of the measurements, nonnegative weights 

  can be considered. In the sequel, the hydration initial value problem will also be referred to as the state 

equation, especially in the context that is not limited to the hydration equation but includes other initial 

value problems too.  

Constant C is known, but the values of   ,   ,  , and   are to be identified through the minimization of 

the cost function defined as follows 

  (          )  ∑   (    (  ))
  

     (3) 

The range of these input parameters is given in Table 1 taken from (Mareš, 2012). As a consequence, we 

arrive at a constrained minimization of f, where, to obtain the value of f for different inputs, the hydration 

initial value problem (1)-(2) has to be repeatedly solved.  

Tab. 1: Lower and upper bounds for input parameters   ,   ,   , and  . 

Parameter Minimum Maximum 

   0.7 1.0 

   10
6 

10
7 

   10
-6 

10
-3 

  -12 -2 

2. Methods 

Various approaches are possible for solving the constrained global minimization problem described in the 

end of Section 1. We have chosen an SQP (sequential quadratic programing) method implemented as the 

optimization procedure fmincon in the Matlab Optimization Toolbox, see (Optimization, 2012). This 

Matlab function is designed to find a minimum of a constrained nonlinear cost function. The algorithm 

asks for the gradient of the minimized cost function. The gradient can be either calculated automatically 

by a numerical differentiation of the cost function or delivered by a user-written Matlab function. To use 

the latter option, it is necessary to derive and solve auxiliary initial value problems that represent the 

sensitivity of the solution of the state equation to the input parameters. The sensitivity is, in fact, the 

derivative of the state solution with respect to an input parameter. The background theory for the 

derivation of these problems is described in (Kurzweil, 1978), Chapter 14, for instance.  

2.1. Sensitivity equations  

The aforementioned initial value problems have the same form, namely 
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where  ( ) and  ( ) are known functions containing the state solution  ( ) the derivative of which we 

wish to calculate. The equation is equipped with  ( )   , the initial condition. In detail, 
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is shared by all the sensitivity equations but   is more input parameter dependent. If the sensitivity (that 

is, the derivative) to    is required, then 
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If    is in the focus of sensitivity analysis, then 
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For   , we obtain 
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Finally, the differentiation with respect to   results in  
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To facilitate the process of the derivation of the sensitivity initial value problems, Matlab Symbolic Math 

Toolbox, see (Symbolic, 2012), was employed. By using this tool, we automatically both derive the 

sensitivity formulae and obtain the respective Matlab functions that are then called from a sensitivity 

calculation routine. 

The sensitivity of the cost function, represented by the partial derivative of f with respect to  

  {          }, is as follows 
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where   
 , the derivative of   with respect to  , is obtained through solving the sensitivity initial value 

problems (4)-(9), that is,   
   . 

The key point of the calculation is to solve the initial problems. This is done by the ordinary differential 

equation solver ode45, a standard Matlab function. Although its use in the main program as well as in its 

subroutines is easy and comfortable, it has turned out that the accuracy the gradient calculation is affected 

by the values of the inner parameters that control the setting of the ode45solver. Tuning of these 

parameters is recommended. 

2.2. Results and comments 

Outputs of two identification program runs are depicted in Fig. 1. The data were generated from a known 

state solution, the parameters of which were then “lost” and identified again.  

 

Fig. 1: Measured data and the solution of the hydration problem corresponding to the identified 

parameters   ,   ,   , and  . 

In the left graph, one can see that the data points are not exactly matched. The initial cost of 181.932 was 

reduced to 4.086, which falls short of expectations. The minimization method got stuck at a local 

minimum. The right graph results from the optimization run starting at a different initial point. The initial 

cost of 3 408.858 was reduced to 0.0000222. 
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3. Conclusions 

The coupling of a purely numerical software with a computer algebra tool has proved to be effective. It 

substantially reduces the danger of erroneous derivation of the sensitivity equations and saves coding 

time. Since the identification problem is a sort of global minimization problem, one has to be careful 

when using a gradient-based optimization algorithms. A set of different starting points has to be chosen. 
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