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Abstract: The two-dimensional numerical model of motion of multiple circular particles in fluid flow based 

on the lattice Boltzmann method (LBM) is presented. The flow is driven by the power-law velocity profile at 

the inlet in a closed horizontal conduit. Motion of particles consists of free motion in the flow, particle-bed 

and particle-particle collisions. The simulation for both movements of particles and velocity field of the flow 

is developed. Stability issues of the simulation are considered and a resolution using the entropic LBM and 

extension of computational resources is proposed. Finally, an enhancement of the simulation for more 

complex processes is suggested. 
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1. Introduction 

The motion of multiple particles in the flow in a closed horizontal conduit is examined. It consists of free 

motion in the flow, mutual collisions of particles and collisions with the bed. Simulation – based on the 

LBM – of both motion of particles and velocity field of the flow is developed. It is shown that the 

simulation produces results comparable to the outputs derivable from the explicit expressions for 

hydrodynamic forces. 

The mathematical model consists of equations for the fluid flow (e.g., Navier-Stokes), equations of 

motion for particles in the flow (Newton equations) and equations for velocities before and after (both 

particle-bed and particle-particle) collisions which can be derived from relations for impulse forces. 

Typically, the fluid flow and the particle motion are solved separately and coupled every time step. The 

fluid flow equations are usually solved by some of the CFD methods while the motion of particles can be 

treated for example by the discrete element method (DEM). 

In contrast, the methods based on the lattice Boltzmann equation (LBM) represent a numerical strategy 

which allows to solve particle-fluid systems within a unique frame (e.g., Yu & Fan, 2010). The LBM is a 

two decade old numerical approach originating from the lattice gas automata methods (LGCA) used for 

the simulation of complex fluid flows (e.g., Succi, 2001). The LBM represents a second order, efficient 

computational scheme due to its inherent locality and explicitness. Moreover, the possibility of 

straightforward parallelization yields another considerable advantage of the traditional numerical 

approaches to fluid flow problems.      

2. Mathematical Model 

The flow is driven by the power-law velocity profile at the inlet in a closed horizontal conduit with 

smooth boundaries. The flow field is described by the incompressible Navier-Stokes equations. The two-

dimensional conduit has boundaries of two types: open boundaries (inlet and outflow) and solid 

boundaries. Each type of boundaries is represented by a different boundary condition. 

The no-slip boundary condition – identification of the fluid velocity adjacent to the surface with the 

velocity of the surface – is supposed at the boundaries of the conduit u(xcon) = 0 as well as on the surface 

of the moving particles u(xpart) = v(xpart). At the outflow, the Neumann free flow – the so called “do 

                                                 
*  Ing. Jindřich Dolanský, PhD.: Institute of Hydrodynamics AS CR v. v. i., Pod Paťankou 30/5; 166 12, Prague 6; CZ, 

dolansky@ih.cas.cz 



 

 3 

nothing” – boundary condition is imposed which corresponds to the normal gradients of the velocity set 

to zero (e.g., Heywood, 1996).  

The motion of a number (up to ten) of non-deformable particles in the flow is determined by actions of 

body and hydrodynamic forces. They are summed into the resultant net force 
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where the first term stands for the gravitational force Fg, the second term represents the drag force Fd, the 

third term represents the force due to added mass Fm and the last term corresponds to the lift force FL 

(Wiberg & Smith, 1985). The net force also develops a torque on the particles which determines their 

angular velocities ω. 

Both the particle-bed and particle-particle collision models are derived from impulse equations of the 

form m(v' – v) = J which use the impulse force J as the measure of change of momentum (the quote mark 

distinguishes velocities before and after collisions). It is supposed that collisions take place in a very short 

time and all external forces can be neglected. If rotation is taken into account the corresponding impulse 

equation for the angular velocities before and after the collision reads as I (ω’– ω) = r Jt where I stands 

for momentum of inertia. The above relations enable to derive expressions for new velocities after 

collisions for both the particle-bed and particle-particle collisions (Czernuszenko, 2009; Lukerchenko et 

al., 2006, 2009). 

3. D2Q9 Lattice Model 

The numerical model based on the LBM corresponding to the mathematical description above is designed 

for the set of nine discrete velocities ci on two-dimensional square lattice – such a lattice is denoted by 

D2Q9. In the LBM the fluid is composed of fictive particles which propagate along the lattice links and 

interact in nodes. The fictive particles are represented by particle distribution functions f (x, ci, t) which 

give probabilities of finding of a fictive particle in a node x with a certain discrete velocity ci in time t. 

The collision and propagation process follows from the lattice Boltzmann equation 
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where the Bhatnagar-Gross-Krook (BGK) collision operator on the right-hand side is applied on particle 

distributions fi in nodes and expresses the tendency to local equilibriums fi
eq

 (Δt is lattice time step). The 

collision operator has to fulfill the first law of thermodynamics, i.e., conservation of mass and 

momentum. 

In the case of the BGK approximation the LBM is subject to numerical instabilities at the sub-grid scale 

caused dramatic fluctuations of distributions fi  in neighboring nodes (e.g., due to very low/high 

viscosity/Reynolds number). However, if the parameter τ (which expresses the rate of tendency to the 

local equilibrium fi
eq

) is replaced by the factor α/2τ where the parameter α represents a non-trivial root of 

equation H(f + α ( fi
eq

 – f )) = H(f ), and H is the Boltzmann H-function of the form H(f ) = Σ fi ln (fi / wi) 

and wi represents weights of respective discrete velocities ci (Karlin et al., 2002, 2006). The collision term 

is then modified as  α/2τ ( fi
eq

 – f) which results in unconditionally stability of the method – even for high 

Reynolds number cases – while still retaining its locality and efficiency. 

Boundary conditions mentioned above – for open boundaries of the inlet and the outflow, and the solid 

boundaries of the conduit – require the usage of different numerical schemes. Thus for the solid surface 

the so called bounce-back scheme is used fi (xcon, t + 1) = f–i(xcon, t + 1/2) which consists in simple 

inversion of distributions along the directions incident to the boundary nodes. In the case of the moving 

surface the term 2wi ρ (xpart, t) / cs
2
 (ci .v) corresponding to the exchange of momentum between fictive 

particles and the moving macroscopic particle is added to the inverted distributions. The specified 

velocity profile at the inlet is implemented by the Zou-He boundary scheme (Zou & He, 1996) which 

allows to impose velocity u(xin, t) or pressure p(xin, t) on the boundary. In this case, only the non-

equilibrium parts of distributions are bounced-back in the normal direction with respect to the boundary. 

In the LBM frame motion of macroscopic particles in the flow is the effect of interaction of fictive 

particles with the solid surface of the macroscopic objects. The action of the objects on the flow is 

modeled as a special – moving – case of bounce-back boundary conditions considered above. Motion of 
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macroscopic objects is caused by the momentum transfer Δp from the fictive particles to these objects. 

Time rate of this momentum transfer Δp /Δt defines the hydrodynamic forces by which the flow acts on 

the objects. The hydrodynamic forces are calculated as a sum over momentum contributions from all 

fictive particles incident to the boundary nodes of the objects 
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with Δt = 1 (Aidun et al., 1998). Another two contributions to the hydrodynamic forces must be 

mentioned which comes from nodes covered (the force Fcov is exerted on the particle) or uncovered (the 

force Fucov forms the negative impulse force increment.) by motion of a particle. Thus the hydrodynamic 

forces can be expressed as the sum Fnet – Fg = Fbn + Fcov + Fucov, compare with equation (1). To update the 

particle position x(t) and its velocity v(t) the left-hand side of the Newton equations has to be integrated 

every time step. For this purpose, the leap-frog algorithm is chosen as it is simple, possesses second order 

accuracy, is invariant under time reversal and has other favorable global properties (Allen & Tildeley, 

1987). 

4. Results 

Particle motions are simulated by means of two different techniques. First approach employs the LBM 

scheme as a fluid solver which is coupled to exactly evaluated hydrodynamic forces based on explicit 

relations (1). In the second approach the forces are evaluated within the LBM frame as sum of 

contributions from momentum transfers of fictive particles (2). The trajectories resulting from both 

techniques are compared to test robustness and applicability of the LBM approach for simulating motion 

of multiple particles. 

It is supposed that the process is performed in a horizontal conduit of the length L = 1 m and height L/20. 

The flow is driven by the power-law velocity profile with maximal value u(0, L/10) = 0.3 m.s
-1

 at the 

inlet. The radii of the moving particles are assumed to be in range r  (           ). The particles are 

released from different vertical positions of the conduit with zero translational and rotational initial 

velocity (vx0, vy0) = (0, 0) and ω = 0. The process is examined with the sand-like particle of density ρp = 

2.5  ρw. However, most of the input parameters are adjustable within a range of values, e.g., maximal 

inlet velocity, radii of the moving particles, density of both the fluid and the particle or viscosity. 

Segments of three particle trajectories x(t) with respect to the length and height of the conduit expressed 

in lattice space units are depicted in Fig. 1. The particles undergo both translational and rotational motion, 

collide with each other (collisions are illustrated by arrows connecting centers) and collide with the bed. 

Although the trajectories calculated in two ways (described above) are similar they also differ partially. 

This can be caused for example by presence of experimentally determined coefficients in exact 

expressions (1) or by insufficient refinement of the lattice grid. 

 

Fig. 1: Trajectories determined by forces: a) within the LBM frame or b) derived from exact expressions. 

The low kinematic viscosity of water results in high Reynolds number Re = uL/ν   10
5
 of the flow. The 

low value of the corresponding lattice viscosity ν* means that the relaxation parameter 

τ ≡ ν*/cs
2
 + ½ → ½, and therefore the LBE method becomes potentially unstable because of incapability 

to dissipate the energy due to very large velocity gradients. The instability issues can be eliminated in 

various ways. 

The entropic LBM represents a resolution of these issues due to its property of unconditional stability. 

However, calculation of the parameter α in each (potentially disruptive) node means solving the 
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mentioned non-linear equation. This equation is usually solved by combination of the bisection and 

Newton-Raphson method. To eliminate computational demands the parameter α is evaluated only in 

nodes exceeding a tolerance value for the deviation |(fi
eq 

– fi) / fi | < 10
-2

, i.e., in nodes with large 

deviations of the population fi from local equilibrium fi
eq

. Thus the entropic approach is applied at quite 

larger scale (than in Dolanský, 2013) because of better usage of mentioned parallel features of the LBM. 

Except the above considered entropic LBM better stability can be also achieved by refining the lattice 

grid. However, such a refinement also yields a significant grow in demands on computational resources. 

Due to the inherently parallel nature of the LBM it can be handled by employing the Parallel Computing 

Toolbox (MATLAB) and other transformations enabling usage of the CUDA GPU computing 

technology. 

5. Conclusions 

The LBM based two-dimensional simulation for movements of particles and velocity field of the flow in 

a closed horizontal conduit is described. The robustness of the method is tested by comparison of 

trajectories and hydrodynamic forces evaluated either within the LBM frame (2) or calculated from 

explicit expressions (1). It is shown that in both cases trajectories and forces are similar though there are 

differences which can be caused by various reasons and will be subject to other considerations. Stability 

issues of the simulation are considered and a resolution using an extended LBE model and enhancement 

of computational resources is proposed. The LBM is extended into the so called entropic LBM to 

guarantee the stability of the computation. The need for increase of computational resources results in 

employing the parallel features of the LBM. Thus, regarding stability and accuracy the LBM is shown to 

be suitable for ongoing development of the simulation.  It is planned to extend it to motion of cluster of 

interacting particles in the fluid to observe mutual influence of the flow and the cloud of particles. 
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