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Abstract: The paper deals with nonlinear vibration of a beam excited by harmonic movement of frame which 

the beam is fixed in. Except for supports of the ends of the beam, another supports along axis of the beam are 

considered. In these supports, there are clearances which cause nonlinear vibration of the system. A 

mathematical model of the beam is obtained using finite element method and decomposition of such a system 

is used to obtain a model including kinematical excitation. As an application, nonlinear vibration of a guide 

thimble in spacer grid of nuclear fuel assembly is shown. To get solution, numerical integration in time 

domain is used and quality of vibration is shown using orbits and phase trajectories of representative 

dynamical quantities. 
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1. Introduction 

In many engineering applications, non-linear vibration of beam type components appears. The non-

linearity given by beam supports with clearances may cause that the vibro-impact motion occurs.  This 

topic is very actual and it is widely studied with respect to structure reliability, see (Chena et al., 2014). 

Particularly, nuclear fuel assemblies consist of a large number of beam type components. The aim of this 

paper is to describe vibration of such a system in general and to define the admissible states of the beam 

motion. Let us suppose the fuel assembly components are fixed in the support plates and are 

kinematically excited. In the fuel assembly, there are rods (fuel rods and guide thimbles) which are fit into 

spacer grids of load-bearing skeleton (frame) with a clearance. Therefore, impacts occur between beam 

and the frame in levels of spacer grids which generate large impact forces during vibration which can lead 

to material stress increase and to degradation of surface of rods. 

2. Mathematical Model of Kinematically Excited Beam on Elastic Supports with Clearances 

A radial symmetric flexible fixed-ended beam is considered (see Fig. 1). One end of the beam is fixed in a 

rigid frame which moves harmonically with frequency   and the second end moves harmonically as well 

with the same frequency   but generally with different amplitude and with phase shift  . Along axis of 

the shaft, there are   elastic supports with stiffnesses          , and there is a radial clearance   

between the beam and a ring of support.  

To get mathematical model of the beam, finite element method (FEM) is used. The beam is supposed to 

be one dimensional continuum satisfying Euler-Bernoulli theory – it is radially uncompressible and there 

is no deplanation of a cross section in deformed position, see (Byrtus et al., 2010). One finite element has 

two nodes and in every one node, there are six degrees of freedom; displacement in axial direction  , 

lateral displacements     in sense of axes    , respectively, torsional rotation angle  , and flexure 

rotation angles      The beam can then be divided to     elements with   nodes and it is chosen in the 
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way that there is a node in each nonlinear support. The vector of generalized coordinates of whole system 

     can be written in the form 

      [                     ]              (1) 

 

 

Fig. 1: System of kinematically excited rigid frame with flexible beam on elastic supports with clearances. 

First, conservative mathematical model of the system will be derived and subsequently it will be extended 

to full nonlinear model. Conservative model can be derived in the following form 

   ̈             (2) 

where              are mass matrix and stiffness matrix of the beam, respectively. To include 

kinematic excitation, the vector of generalized coordinates of the system in vertical position can be 

divided into three subvectors             where index   corresponds to lower kinematically excited 

node (fixed to the frame), index   corresponds to all free nodes and index   corresponds to generalized 

coordinates of upper kinematically excited node (fixed to the frame). System can be then written in 

decomposed form 
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After rewriting second row of (3), mathematical model is 

     ̈                   ̈          ̈                          (4) 

Now, the model (4) can be extended considering damping and nonlinear forces generated in supports with 

clearances. Damping is supposed to be proportional, so             where         can be 

determined from estimation of damping ratio of first two eigenmodes. After inclusion of damping matrix 

and using vector of nonlinear forces       , the model (4) can be completed in the form 

   ̈        ̇                   ̈          ̈                                 
                (5) 

The vector        depends on generalized coordinates of free nodes and it is given as a sum of vectors of 

nonlinear forces in all supports 

          ∑   
   

             (6) 

Vector   
        includes only lateral forces generated in  -th support and it can be written in a form 
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where forces    
   

 and    
   

 are placed in positions corresponding to transversal displacement of supported 

node „ “ in direction    , respectively. These forces are given in the form 
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where         are contact stiffnesses in direction     in  -th support,           are relative displacements 

of center of the beam with respect to the frame in direction     in  -th node and      is Heaviside 

function. 

3. Application to Vibration of Guide Thimble of Fuel Assembly of a Nuclear Reactor 

The application part of the paper is aimed at vibration of fuel assembly TVSAT of the nuclear WWER 

1000 type reactor which is in detail described in Sýkora (2009). Mathematical model of the reactor is 

built up in Hlaváč & Zeman (2013). The above theory was applied to nonlinear vibration of guide 

thimbles, which together with fuel rods, center tube and load-bearing skeleton (frame) with eight spacer 

grids make a fuel assembly. The guide thimbles are at both ends fixed in two support plates by means of 

lower and upper piece. All the rods are linked by the spacer grids which are transversal to their axes and 

the guide thimbles are inserted into spacer grids with a small clearance. One guide thimble is shown in 

the Fig. 2 with both lower and upper pieces. Further, only one guide thimble at the position   in 1
st
 

segment (s=1) will be considered. A generally spatial movement of the plates is given in configuration 

space       [               ] 
 
       as shown in the Fig. 2 and vibration of a guide thimble in 

configuration space which is radially-tangential in     plane according to Zeman & Hlaváč (2011). 

Between these two systems, there is transformation which can be described by 

              
   

             (10) 

where     
   

 is transformation matrix which transforms movement of lower and upper plates    to 

movement of kinematical excited nodes of the guide thimble     . It is dependent only on geometrical 

parameters, see Zeman & Hlaváč (2011). Only one chosen guide thimble is considered and indexes   

and   will be omitted further.  

 

 

Fig. 2: Guide thimble in lower and upper piece and coordinate systems. 

The considered guide thimble was divided into 18 finite elements. The lower    and upper    nodes are 

supposed to be ideally fixed and in every even free node, there are supports (spacer grids) with the same 

clearance considered. The geometry of spacer grids is shown in Hlaváč & Zeman (2013). In the first 

phase, only harmonic excitation with frequency   and with phase shift     was implemented. 

Mathematical model of the system can be written in the form 

   ̈        ̇                   
            

         
         

                                           
            

         
                (11) 

where       are vectors of amplitudes of harmonic excitation. To get solution of the system, numerical 

implementation in MATLAB was accomplished. To integrate mathematical model (11), fourth order 

Runge-Kutta method with adaptive step in time domain was implemented using ode45 MATLAB built-in 

function. For the simulation, important parameters are clearance     mm, and frequency         
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    Hz, contact stiffness in all spacer grids              N/m,      . Vectors of kinematical 

excitation are supposed in the form 

     
    

  [                  ]     
    

  [                     ]   (12) 

Numerical integration results are shown in the Fig. 3. Orbits in plane     in chosen nodes of guide 

thimble are depicted (Fig. 3, on the left). It is evident, that boundary nodes which are close to 

kinematically excited nodes vibrate quasiharmonically. Nodes in the middle of the guide thimble vibrate 

with the largest amplitude and that is why impacts occur the most often there. There are phase trajectories 

depicted as well (Fig. 3, on the right). The impact motion can be well identified from these phase 

portraits. The impacts correspond to points at the trajectories where large changes in the velocity occur. 

 

Fig. 3: Orbits in chosen nodes of guide thimbles (on the left) and example of phase trajectories. 

4. Conclusion 

The paper focuses on mathematical modelling of kinematically excited beam supported by nonlinear 

supports. The theory described above shows an approach to modelling of such a system. Particular 

application to guide thimble of nuclear fuel assembly is implemented in MATLAB and typical dynamical 

response of the system to harmonic kinematical excitation is shown. 

Future analyses will be focused on optimization of parameters (clearances, contact stiffnesses, etc.) to 

reach lower impact forces between guide thimble and the spacer grids. Except for that, derived 

mathematical model and the display of impact motion are wide enough to represent dynamical response 

caused by another kind of excitation than only the harmonic one. Seismic excitation can be considered 

and a response of the system can be analyzed simulating seismic event in nuclear power plant. 
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