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Abstract: The granular nature of the railway ballast in connection with fast dynamic loading makes it an 

ideal application of the Discrete Element Method (DEM). The contribution employs DEM to simulate the 

ballast behavior in large oedometric test. Ballast grains are represented by convex polyhedral particles with 

shape randomly generated via Voronoi tessellation. A novel algorithm to compute repulsive contact force 

based on intersecting volume of polyhedrons is presented. Crushing of grains is included via splitting the 

particles into smaller polyhedrons when some stress-based criterion is fulfilled. 
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1. Introduction 

Power of modern computers is utilized to help engineers in designing and understanding of their 

technological solutions more frequently than ever. Dealing with various types of problems led to 

development of many different methods, among which the Discrete Element Method (DEM) is especially 

suitable when granular media under highly dynamic loading is studied. DEM treats every grain as an 

ideally rigid body which interacts with other particles through forces at their common contacts. In most 

cases, the simplest spherical elemental shapes are used. However, it has been reported that the particle 

shape has a strong influence on resulting behavior of the system. Therefore, more realistic elemental 

shapes are being considered. This is often achieved by clumping spheres into some more complex 

aggregations. Such a method has an advantage in simplicity and computational speed. Another approach 

lies in direct implementation of some non-spherical elements. There has been also extensive effort to use 

polyhedral particle shape. A technique developed by Cundall (1988) called common plane method is 

often used. It replaces contact between two polyhedrons by two plane-polyhedron contacts. This method 

was further improved by fast determination of the common plane (Nezami et al., 2006).  

The railway ballast is used worldwide to support sleepers and rails on both normal and high speed 

railways. However, its short and long time behavior is still not fully understood. It is a highly 

heterogeneous material with strongly nonlinear behavior further complicated by its previous compaction 

and crushing. Robust models of the ballast are needed for better design of sleepers, under sleeper pads, 

and ballast itself as well as for determining optimal maintenance schedule of the tracks. 

In this contribution, we present simulation of railway ballast experiment - large oedometric test - 

performed at the University of Nottingham (Lim and McDowell, 2005) using crushable polyhedral 

particles with random shape. Algorithms presented in the paper were implemented into the open source 

DEM software YADE (Kozicki and Donzé, 2008). Manipulation with polyhedrons as well as 

computation of convex hulls and least square fitting by plane is done via open source software CGAL 

(Kettner, 1999).  

2. Generation of Randomly Shaped Polyhedral Particles 

The particles are created using procedure that contains a random process; however, control of grain size 

and aspect ratio is kept. Initially, volume of size 5 × 5 × 5 units is filled by nuclei with minimal mutual 

distance lmin. Starting with central nucleus in the center of the volume, other nuclei with random 

coordinates are accepted if their distance to all previously placed nuclei exceeds lmin. Voronoi tessellation 
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is performed and the Voronoi cell associated with the central nucleus is extracted and used as a basic 

particle shape. The control of size and aspect ratio is ensured by scaling the Voronoi cell in all three 

directions according to user defined scaling vector. Finally, the particle is randomly rotated to prevent 

directional bias. Volume, centroid and inertia of the polyhedral particle is calculated through dividing the 

polyhedron into tetrahedrons. Contributions of tetrahedrons to each of the wanted quantity are found 

using analytical formulas. 

3. Contact between Polyhedrons 

In every time step, there is a loop seeking for all possible contacts between polyhedral elements. This is 

simply done through creation of bounding boxes around every polyhedron and detection of overlapping 

between the bounding boxes. If bounding box protrudes, one must examine the overlapping of 

polyhedrons PA and PB. This is solved here through searching for a separation plane.  

The polyhedral intersection is assumed to exist until some separation plane is found. Only limited set of 

candidates for the separation plane must be tested to prove or disprove its existence. The minimal set of 

candidates contains bounding planes of both of the polyhedrons and planes determined by one edge from 

PA and another edge from PB. A loop over all these candidates is browsed. Every time, a trial separation 

plane is constructed so that centroid of the polyhedron PA lies at the positive side of the trial plane. Then, 

if all vertices from the first polyhedron PA lay at positive halfspace and all vertices from the second 

polyhedron PB lay in the negative halfspace, the trial plane is approved. If the loop is finished without 

approving any separation plane, there must be a contact between polyhedrons.  

When two grains come into a contact, some repulsive force arises. In DEM simplification, the grains are 

ideally rigid and the contact is accompanied by overlapping of particles. In case of convex polyhedrons, 

the intersection is a convex polyhedron as well (Fig. 1). It is denoted PI, its volume is VI. It is assumed 

that in the whole overlapping volume, constant repulsive volume force acts. Integrating this volume force 

over the intersecting volume gives us the total normal force Fn and moment, that should be applied on 

both particles. Since the volume force is constant, the magnitude of the normal force is linearly 

proportional to the intersecting volume  

 | |n n Ik VF  (1) 

where kn [N/m3] is a material parameter called volumetric stiffness. To eliminate the moment, the normal 

force acts at the centroid of the intersection. To find the exact polyhedral intersection, dual approach 

(Muller and Preparata, 1978) is used.  

Besides the magnitude of the normal force, its direction must be determined as well. Normal direction is 

estimated to be perpendicular to a plane f taken as the least square fit of the shell intersection curve. After 

polyhedral intersection is found, its faces are divided to those belonging originally to the polyhedron PA 

and to the polyhedron PB, respectively. Edges on the boundary between these two groups (shell 

intersection curve) are then interpolated by a plane f using the least square fitting.  

 

Fig. 1: Two polyhedral particles in contact. 
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Shear force is calculated by standard incremental algorithm. It consists in correction of the shear force 

from the last time step for changes in the normal direction and for the rigid-body motion. Then, 

an additional shear force increment caused by mutual movements and rotations of polyhedrons is added. 

Standard Coulomb friction is applied. Therefore, the shear force magnitude is limited by magnitude of 

normal force multiplied by tangent of internal friction angle.  

4. Model of Crushing 

Crushing of ballast grains is responsible for degradation of ballast and modelling should take it into 

account. Implementation of the crushing phenomenon is simply done via splitting the polyhedral particles 

into smaller polyhedrons whenever they fulfill some failure criterion. The criterion is based on 

comparison of equivalent splitting stress, σe, and size dependent strength, ft. The average Cauchy stress 

tensor in the particle can be expressed as 
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where c runs over all contacts of the particle, F(c) is a force acting at the c-th contact at point with spatial 

coordinates l(c); 
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jF are i and j components of the coordinate vector or force, respectively. The 

stress tensor is symmetrized by averaging opposite non-diagonal members; then, principle stresses (σI > 

σII > σIII) and their directions are found by eigenvalue analyses. The equivalent splitting stress entering 

the failure criterion is defined as  
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The equivalent splitting stress is compared with material strength ft, which is (according to Lobo-

Guerrero and Ballejo (2005)) dependent on particle size.  

Whenever splitting stress exceeds strength of a particle, the polyhedron breaks. Polyhedron is cut through 

its centroid by two perpendicular planes that are parallel to the second principle stress, σII, and form angle 

π∕4 with the remaining principal stresses. After the breakage, translational and rotational velocities are 

assigned to the polyhedral pieces according to the current velocities of the original particle.  

5. Application to Oedometric Test 

The proposed model was validated by simulating a large oedometric test on railway ballast performed and 

published by Lim and MCDowwel (2005). They tested several different ballasts, from which we chose 

variant A with ballast of grading 37.5-50 mm. A steel cylinder of diameter 300 mm and depth 150 mm 

was filled by the ballast and compacted on a vibration table with surcharge force 250 N. Then, it was 

loaded in compression up to force 1.5 MN (mean stress 21.2 MPa). Total duration of the experiment was 

about 40 minutes.  

The same test was simulated with the polyhedral particles. Initially, randomly shaped polyhedrons were 

generated at random positions in a cylinder of magnified depth 1 meter with no overlapping. This was 

done by sequential placing of trial polyhedrons that were rejected whenever any collision with previously 

placed particles appeared. The polyhedrons then fall freely under 5 times magnified gravitational 

acceleration and reduced friction angle. Both gravity and friction changes were done to increase 

compaction of the assembly. After reaching low unbalanced forces, all polyhedrons exceeding depth limit 

0.18 m were removed. To increase the compaction, the vibration table was mimicked via loading the 

sample by alternating acceleration in horizontal directions of magnitude equal to 5 times multiplied 

gravitation. Each vibration cycle consisted in four intervals of duration 0.02 s with constant acceleration 

in directions +x, -x, +y and -y, respectively. Three vibration cycles were performed. Then, the simulation 

continued until low value of unbalanced forces was reached again. At that point, loading by sinusoidal 

wave started. The loading time was shortened to 1/3 s.  
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Fig. 2: Snapshots a) at the beginning of loading; b) at the maximum load; c) after releasing all the load. 

 
Fig. 3: Load-displacement response of the model with crushable particles. 

The shear stiffness and friction angle were estimated; the normal volumetric stiffness of steel was 

assumed 10 times larger than the ballast normal stiffness, which was approximately identified in 

Eliáš (2013). Evaluation of the crushing criterion was run every 0.001 s during the simulation. Broken 

grains with volume lower than 1 cm3 were removed from the simulation as being less relevant to the 

overall response but slowing down the simulation substantially. Three variants of strength f0 were tested: 

400 MPa, 500 MPa and 600 MPa. Results are showed in Fig. 3. The value 500 MPa gives the best 

correspondence with the experimental record. It is interesting that crushing might occur also during 

unloading, especially for low strength close to the peak load.  
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