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Abstract: In the paper vibration analysis of a propeller shaft of a light airplane piston engine is considered. 

The bending vibration of the shaft occurs due to unbalanced assembly: reducer disk – shaft as a consequence 

of machining tolerance. The finite element method is used for determination of the shaft deflection and the 

geometric non-linear model is considered. The dynamic equations for rotating shafts are developed and the 

results for bending vibration of the shaft are presented. 
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1. Introduction 

The object considered in the present paper is a propeller shaft of a light airplane. The drive unit consists 

of new-generation, multifuelled airplane piston engine, planetary reducer, and propeller shaft (Ostapski, 

2012). The design of the reducer involves the use of a planetary gear, thus a disk with the ring gear is 

embedded on the propeller shaft (see Fig. 1). For safety reasons it is very important to properly balance 

this assembly since the shaft speed during operation is high (approx. 2600 rpm). Moreover, during 

operation the roller bearings develop additional clearance due to wear, which also influences the shaft 

balance. Therefore it is important to analyze the bending vibration of the shaft due to unbalanced 

elements. 

In order to estimate the possible imbalance of the reducer the machining tolerance of the splined 

connection of the shaft and the disk is taken into account. The line of deflection of the shaft is determined 

using the finite element method. The axis of symmetry for the shaft pin and the disk cannot be ideally 

coaxial (within the area of machining tolerance) and this is the reason for vibrations appearing during 

rotation of the shaft. These vibrations cause additional deflection of the rotating shaft and influence the 

gear wheel meshing. This problem was carefully addressed in (Hać, 2005) and the method of calculation 

of the load distribution corrections along gear width was also presented. 

The propeller shaft is designed for torque transmission from engine to the propeller and dominant strains 

are those from conveying torque. However, the presence of heavy elements – such as a reducer disk – 

causes the possibility of bending vibration to develop, which is highly dangerous when not controlled.  

The model of the propeller shaft presented in Fig. 1 for further consideration is simplified to the form 

presented in Fig. 2 

2. Modelling of Shafts by FEM 

The finite element method is used in order to analyze elastic transverse deformation of the propeller shaft. 

The planar Bernoulli-Euler beam finite elements are used and the nodal displacement vector consists of 

both transverse and longitudinal displacements of nodes and nodal angular deformations. 

2.1. Modelling of articulated joint (hinge) 

Usually for modelling a hinge joint an additional very short finite element (compared to other elements 

used in construction) is used. In this way the deformation angle at the left side of the hinge is different 
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than at the right side. In order to avoid introducing additional elements, the node (number 2) at the 

articulated joint (hinge) is modelled by assuming two independent rotational degrees of freedom (left and 

right) - see Fig. 3. 

a) 

b) 

Fig. 1: Propeller shaft of airplane engine: a) 3D view; b) Its cross-sectional view. 
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Fig. 2: Model of propeller shaft for finite element analysis. 
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Fig. 3: Displacements of nodes of two finite elements connected by the hinge. 

Nodal displacement vectors for elements 1 and 2 connected in the hinge are as follows 

    21221111 ,,,,,  wuwu
T  (1) 

    33322222 ,,,,,  wuwu
T  (2) 

where: 2221,  are the left and the right angular deformations of the hinge node, respectively. 

In this way the articulated joint is modelled in a precise way (no artificial elements in the hinge are used). 

Moreover, the size of the problem is reduced because the global stiffness matrix compared to the problem 

without hinge joint is increased by only 1 (i.e. additional deformation angle in the hinge). In the case 

when additional element is used the size of the problem increases more (co-ordinates of additional node). 

In most cases longitudinal displacements of nodes of finite element neighboring with the hinge joint are 

equal – the hinge does not transfer longitudinal force and the neighboring finite elements are not 

longitudinally loaded. In such case it can be assumed: u1 = u2 = u3. 

3. Equations of Motion of Rotating Shaft 

The equations of motion of rotating shafts can be obtained by any method used in derivation of motion of 

dynamic systems such as the principle of virtual work, the Gibbs-Appel equations of motion, or 

Lagrangian equations of motion. The equations of motion of rotating shaft in the global coordinate system 

can be expressed as follows (Brown and Shabana, 1997): 

                 FxKKxCxCxM cg    (3) 

where coefficient matrices are global matrices obtained from appropriate element matrices: [Me] is the 

element inertia matrix, [C] is the global damping matrix, [Cg] is the gyroscopic matrix, [K] is the global 

stiffness matrix, [Kc] is the centrifugal matrix, {F} represents generalized forces, and  x ,  x and  x  

represent acceleration, velocity, and displacement vectors (in nodal points). Matrices [Cg] and [Kc] are 

obtained from element matrices [Cge] and [Kce] defined as follows: 

         d2
0

 

L

e

T

ege NNAC ,            d
0

2



L

e

T

ece NNAK  (4) 

where  is the angular velocity of the shaft,  is mass density, A is the cross-sectional area, [Ne] is the 

beam finite element shape function, 0     L, L is the length of the beam finite element, and 

[] = [0, -1; 1, 0] is the Boolean type operator matrix. 

The damping matrix can be presented as a linear combination of the mass and stiffness matrices 

      KMC    (5) 

where  and β are constants to be determined from first few natural frequencies of the system. Usually 

damping proportional to stiffness is considered (i.e. “structural” damping), and in that case  = 0, and β is 

obtained based on natural frequencies and assuming material damping coefficient for steel in the range of 

0.020.03. 
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In order to calculate the natural frequencies of the system the homogeneous version of equation of (3) is 

considered. In the further analysis the structural damping (proportional to stiffness) is considered and the 

damping matrix is formulated as    KC  . 

4. Numerical Results and Conclusions 

Dynamic behavior can significantly influence the deflection of the shaft. In order to conduct the vibration 

analysis the damping coefficient β for determination of the damping matrix [C] (see Eqn (5)) should be 

calculated. The coefficient β is calculated based on the first two natural frequencies of the system. For the 

given data of the propeller shaft the natural frequencies are as follows [Hz]: 39; 99. 

In our case of steel shaft the damping ratio ξ is assumed to be 0.02 for the first two modes. The 

coefficient β is calculated from the formula (Rakowski & Kacprzyk, 1993): 

 )/(2 21     (6) 

For the obtained natural frequencies this yields β = 2.89710
-4

. 

In the dynamic analysis it is assumed that the imbalance of the shaft-disk assembly results from the shaft 

and the disk axes not being coaxial (within the assumed tolerance of the joint). Thus additional centrifugal 

forces act on the shaft and influence its deflection. The deflection graph of the shaft obtained for the 

highest inertia force possible is presented in Fig. 4.  
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Fig. 4: Shaft deflection. 

The results show that, within the given tolerance of shaft – disk connection, significant centrifugal forces 

(approximately 60 times the weight of the disk) may occur, which cause additional deflection of the shaft. 

It should be noted that the presented analysis does not contain additional dynamic response due to 

clearances in bearings. The problem is very important since the bending vibration of shafts is often the 

reason for destruction of the structure in both piston and jet airplane engines. 
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