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Abstract:  The presented paper deals with the incorporation of complex (non-ideal) equation of state into 

the Euler model which describes dynamics of inviscid fluid. We have performed numerical experiments for 

the steady transonic flow of steam in the 2D GAMM channel (channel with the 10% thick circular arc bump 

on the lower wall). The using of complex equation of state allows the more accurate prediction of 

thermodynamic quantities, mainly in the regions where compressibility factor differs from unity. The results 

achieved by the van der Waals, Redlich-Kwong-Aungier, one-coefficient virial and special gas IAPWS 

equation of state are compared with the traditional perfect gas model. All of these models are implemented 

into in-house CFD code based on the finite volume method in 2D along with the AUSM+ flux scheme. The 

results confirmed the necessity of using more complex equations of state, especially when higher pressures 

are considered. 
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1. Introduction 

Major part of CFD codes frequently limit attention to the perfect gas model (PG). This approach is 

justified only if thermodynamic quantity ranges are relatively narrow and the compressibility factors do 

not differ too much from unity. It is usually true if pressures are relatively low and (or) temperatures are 

higher. It yields significantly reductions in computational times. However, not negligible errors can be 

occured in some non-ideal state regions. To remedy this, more complex equations of state must be used. 

2. Flow Model and Equations of State  

The dynamics of inviscid fluid flow in 2D is described by the system of time dependent Euler equations 

              

where  (     )  (          )  is vector of conservative variables,  ( )  (       
         ) ,  ( )  (                )  are vectors of fluxes in which   ,  ,  ,  ,   

isdensity, x- and y-component of velocity, specific total (internal) energy, static pressure and specific 

total enthalpy, respectively. This system of equation must be closed by the relation for pressure  

    ( ). Analytical form of the pressure equation exists only in the case of PG model. In cases where 

more complex equations of state are used we obtain the pressure value only by some iterative procedure. 

In this paper we adopted the Newton-Raphson method (NR) which solves firstly nonlinear algebraic 

equation for temperature    (   )   ( )  from known values of density  ( ) and internal energy 

 ( ). Static pressure is then evaluated from relation        (      
   )   ⁄ . 

In the following we briefly summarize one of the possible techniques for evaluation of thermodynamic 

quantities in the case of non-ideal gases. The value of certain thermodynamic quantity  (   ) is given as 

the contribution of its ideal part    (   ) computed with the means of PG model from the known value 

of density and temperature. This ideal value is then corrected by the residual correction     (   ), cf. 

Fig. 1, for which the following integral formula reads (Novák, 2007) 
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There are actually two equations required for evaluation of all thermodynamic quantities. The first is the 

thermal equation of state typically in the form    (   ). It is the so-called incomplete equation of state 

since it lacks caloric description. The second is the temperature dependent relation for specific isobaric 

heat capacity in the ideal gas state   
     

  ( ). However, in the last decades the approach with so-called 

fundamental equations of state became popular. In this paper we use the form with non-dimensional 

Helmholtz (free) energy  (   ), where      ⁄      ⁄  and ( )  designates critical state. This 

function has two parts. The first part is the ideal contribution     only stemmed from the ideal specific 

internal energy   and the ideal specific entropy   along with some supplied equation for   
  ( ). In the 

case of steam we adopted the relation from (Wagner & Pruss, 2002). The second part is the residual 

correction      stemmed from some non-ideal equation of state. In the paper all of the used traditional 

equations of state in the form    (   ) are transformed to its corresponding residual Helmholtz energy 

part via the relation borrowed from (Novák, 2007)
†
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where       ⁄  is the compressibility factor and   is the specific gas constant. All thermodynamic 

properties can be derived by using the appropriate combinations of    
and     and their first and 

second derivatives. Details can be found e. g. in (Wagner & Pruss, 2002). 

             

    Fig. 1: Residual correction.                       Fig. 2: Computational mesh of GAMM channel.     

PG model is both thermally and calorically perfect. This model predicts constant value of compressibility 

factor which consequences in validity of Mayer's relation. Furthermore, the specific isobaric heat capacity 

is constant too. This limitation naturally causes vanishing of residual part     , and so reduces 

thermodynamic concept to simple analytical form. The residual part relation for others used equations of 

state along with their coefficients which were computed in this paper are briefly summarized in the 

following part where e. g. in the case of vdW model for its coefficients holds           ⁄ ,       
where  ,   are classical coefficients of this model. 

 Van der Waals (vdW) 

    (   )        (    )            ,            

 Redlich-Kwong-Aungier (RKA) 

    (   )       (     )    (     ) 

           ,           ,             ,             

 One-coefficient virial (1-VIR) 

     (   )   ∑    
   

        given in (Harvey & Lemmon, 2004) 

 Special gas equation IAPWS-95 (GE-IAPWS-95) 

     (   )  ∑    
      

             given in (Wagner & Pruss, 2002) 

 

                                                 
† Owing to consistency and comparison with the special gas equation provided by IAPWS 
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3. Numerical Method 

The computational domain of the test GAMM channel is discretized by using Gmsh mesh generator 

(Geuzaine & Remacle, 2009). The mesh is unstructured triangular (set frontal meshing algorithm) and 

contains 9247 nodes, 18144 cells and 27390 interfaces, cf. Fig. 2. The cell-centered finite volume method 

with piece-wise constant reconstruction of cell data is used for discretization of spatial derivatives. Fluxes 

through common cell interfaces are computed applying AUSM+ scheme. The resulting system of 

ordinary differential equations is solved by 3-stage low-storage Runge-Kutta method with        . 

Time step for this method is estimated by the relation borrowed from (Blazek, 2006). Subsonic inlet flow 

is considered, and so we prescribed stagnant pressure            , stagnant temperature  

           and zero y-component of velocity at the inlet boundary. Prescription of high pressure is due 

to effort to simulate flow in non-ideal state region. The value of stagnant entropy along with extrapolated 

static pressure from interior is used for calculation of density and temperature in ghost cells where the 

system of two nonlinear algebraic equations must be solved (NR method applied). Considering outlet 

flow in subsonic regime, we prescribed back pressure     , via the pressure ratio                ⁄ ; 

density and velocity components are extrapolated from interior. NR method is applied for evaluation of 

temperature from known density and pressure. At the inviscid wall boundary zero normal velocity 

component is prescribed. Initial estimates for all NR calculations are taken from previous time level. 

 

Fig. 3: Lower and upper wall density [kg m
-3

] distribution. 

 

Fig. 4: Lower and upper wall Mach number [-] distribution. 

4. Results 

Fig. 3 shows distribution of density along the upper and the lower wall. Real gas models give 

significantly higher values and they shift location of shock wave downstream. Fig. 4 presents distribution 

of Mach number. Deviations from PG model are on either walls relatively small. However, this is not true 

in the vicinity of shock wave along the lower wall and in the middle of the upper wall.  Shifting of shock 

wave location on the lower wall resulted in higher peak values of Mach number (PG 1.32, vdW 1.41, 

RKA 1.36, 1-VIR and GE-IAPWS-95 1.39) and in lower values in the location of so-called Zierep's 

singularity (= stronger shock waves). Maximum Mach number values on the upper wall are as follows, 

PG 0.84, vdW 0.91, RKA 0.86, 1-VIR and GE-IAPWS-95 0.88. 
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            Fig. 5: Entropy [kJ kg
-1

 K
-1

] distribution.              Fig. 6: Compressibility factor [-] distribution. 

Fig. 5 depicts distribution of entropy. Real gas models give lower values. From physical point of view it 

is known that in the case of inviscid fluid flow entropy should grow only as a result of shock wave 

formation. Non-physical entropy increase and decrease on the bump surface up to the shock wave 

location and wiggles at the bump inlet and outlet in our results are caused by imperfection and numerical 

viscosity of used flux scheme. Fig. 6 shows distribution of the compressibility factor. All real gas models 

give substantially lower values and range between 0.805 and 0.845 (except vdW model). The comparison 

of real gas total CPU time per one cell and per one time step related to the same quantity in the case of PG 

model is summarized in Tab. 1. The most CPU time consuming operation (relative to the real gas model 

implementation) is repeated numerical solution of temperature from known internal energy and density 

(temperature is required for evaluation of pressure and other quantities like e. g. sound speed). In this case 

the average number of iterations in NR method ranges between 1.55 and 2.15. The maximum values are 

in the vicinity of shock wave. 

Tab. 1: Relative CPU time comparison 

EQUATION OF STATE PG vdW RKA 1-VIR GE-IAPWS-95 

RELATIVE CPU TIME 1.00 2.08 3.04 4.37 6.13 

5. Conclusion Remarks 

Results confirmed necessity of using more complex equations of state when flow simulations include 

non-ideal state regions. It was presented on distributions of selected parameters. Drawbacks of this 

augmentation are loss of explicitness in thermodynamic concept and higher CPU time demands. 
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