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Abstract: Macroscopically heterogeneous materials, characterized mostly by comparable heterogeneity 

lengthscale and structural sizes, can no longer be modelled by deterministic approach. It is convenient to 

introduce stochastic approach with uncertain material parameters quantified as random fields. Nevertheless, 

introduction of random fields brings higher demands on quality of input data, especially on inputs of 

covariance functions representing the spatial randomness. The present contribution is devoted to the 

construction of random fields based on image analysis utilizing statistical descriptors, which were developed 

to describe the different morphology of two-phase random material. The whole concept is demonstrated on a 

simple numerical example of stationary heat conduction where interesting phenomena can be clearly 

understood. 
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Covariance function. 

1. Introduction 

Nowadays, the stochastic finite element method (SFEM) is very popular approach to modelling of 

heterogeneous materials. SFEM is an extension of the classical deterministic finite element approach to 

the stochastic framework i.e. to the solution of stochastic (static and dynamic) problems involving finite 

elements whose properties are random, see (Stefanou, 2009). The Monte Carlo (MC) method is the most 

widely used technique in simulating of these problems. Unfortunately, MC simulations require thousands 

or millions samples because of relatively slow convergence rate, thus the total cost of these numerical 

evaluations quickly becomes prohibitive. To meet this concern, the surrogate models based on the 

polynomial chaos expansion (PCE), see (Xiu & Karniadakis, 2002), were developed as promising 

alternative. The PC-based surrogates are constructed by different fully-, semi- or non-intrusive methods 

based on the stochastic Galerkin method (Ghanem & Spanos, 2012; Matthies 2010), stochastic 

collocation (SC) method (Babuška et al., 2004; Xiu, 2009) or DoE (design of experiments)-based linear 

regression (Blatman & Sudret, 2010). 

When the input parameters are defined as random fields, the additional mathematical formulations are 

introduced to describe the spatial randomness. The Karhunen-Loève expansion (KLE) allow for 

representation of random fields utilising surprisingly few orthogonal modes from spectral decomposition 

of covariance matrix, see (Adler & Taylor, 2007). Several analytical covariance functions (CF) were 

created to describe the spatial covariance, but their relevance in describing real material properties 

remains questionable and poorly justified. Therefore, relatively new concepts of extracting the spatial 

covariance from images were established, see (Soize, 2006; Jürgens et al., 2012). Here, we propose a 

novel construction of CF obtained from two-point probability density function, which is calculated from 

the given image. 
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2. Methodology 

Due to the lack of space it is impossible to introduce whole methodology. Therefore, we focus here only 

on the construction of random fields. Other topics, such as implementation of heat conduction problem 

into the stochastic framework using the stochastic Galerkin are presented elsewhere; see (Kučerová & 

Matthies, 2010; Kučerová et al., 2012). As a preamble, we utilise KLE for modelling the spatial 

randomness. Based on the spectral decomposition of covariance function         and the orthogonality 

of eigenfunctions   , the real-valued random field        truncated after M terms can be written as 

              ∑ √    
 
              (1) 

where       is the mean value,    are the positive eigenvalues and      is a set of uncorrelated random 

variables of zero mean and unit variance. It is obvious that the CF plays a key role in the construction of 

random field. Therefore, we introduce following relations: The first two belong to classical analytical 

approaches and third one is a novel strategy utilizing the information from images: 

 Gaussian CF in two-dimensional space is given as 
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where         and            are arbitrarily chosen two points,   
  is the variance of        

and           are the correlation lengths. 

 Exponential CF is defined as 
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Image-based CF – here we focus  in  particular  on  two-point  probability  function          , see 

(Torquato, 2002), and two-phase medium with constant value      over the domain of the phase 

   . According to (Lombardo et al., 2009), the CF is derived as  
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where      is volume fraction of the phase    . 

3. Numerical Example 

 

a)                                                                     b) 

Fig. 1: a) Heterogeneous structure with boundary conditions ( is the temperature [C], q is the heat flux 

[Wm
-2

] and l is the length [m]) and b) its finite element discretisation with 441 FE nodes. 

This section supports the proposed methodology through numerical study of heat conduction problem in 

irregular masonry, where energy balance equation leads to  

                    ,          , (5) 

          ,       ,  (6) 
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where   is a temperature,   stands for a head source or sink and   is a prescribed boundary conditions. 

Thermal conductivity is assumed to be                  for bricks (white phase) and  

                 for mortar (black phase). We consider the geometry obtained from a photograph of 

irregular masonry. Its black-and-white variant together with the loading conditions is depicted in Fig. 1a, 

while the employed finite element discretisation is given in Fig. 1b.  

While the image-based CF is fully defined by the image and conductivity in particular phases, the 

Gaussian and exponential CFs need a calibration of correlation lengths    and    and variance   
 . 

Moreover, the expansion of the field in Eq. (1) also requires mean value   . The latter two moments can 

be obtained simply as mean and variance of conductivity values      and      prescribed to both phases 

weighted by their corresponding volume fractions      and     . Determination of correlation lengths is, 

however, not trivial and commonly requires some expert knowledge about the modelled material. Here 

we exploit our knowledge about image-based CF and optimise the values of correlation lenghts so as to fit 

the analytical CFs to the one obtained from image. The optimisation process resulted in         mm 

and         mm in case of Gaussian CF and         mm and         mm in case of exponential 

CF. The shape of resulting CFs is shown in Fig. 2, where inadequacy of Gaussian or exponential 

approximation of image-based CF is clearly visible. 

            

a)                                                                     b) 

Fig. 2: CFs corresponding to given microstructure: a) Cut along the axis x; b) Cut along the axis y. 

The impact on the shape of random field is given by shape of particular eigenfunctions, which are 

depicted in Fig. 3. One can see the low oscillation of first eigenfunctions obtained from Gaussian and 

exponential CFs, while the image-based eigenfunctions clearly describe higher frequencies.  

 

Fig. 2: KL modes (M = 1, M = 2, M = 3, M = 4, M = 441) for given CFs. 

Finally, we computed the relative error of temperature fields defined as  
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where    denotes the temperature field obtained using a given CF described by   modes,     
     

 denotes 

the temperature field obtained using image-based CF and all 441 modes, and    is the Euclidean norm 

computed over the spatial domain   and stochastic domain   discretized into 1000 randomly generated 

realisations of random variables     . The evolution of resulting errors is shown in Fig. 4 with 

remarkable divergence of errors obtained using Gaussian and exponential CFs. 

 
Fig. 3: Relative error of temperature. 

4. Conclusions  

In this contribution, we present different strategies for construction of random fields. A comparison of 

classical approach based on the analytical CFs and a novel methodology based on image analysis was 

shown to assess the quality and accuracy of obtained random fields. The whole concept was demonstrated 

on the stationary heat conduction problem with spatial random material parameters. 
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