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Abstract: It is well known, that simulation of crack propagation using the finite element method is dependent 

on mesh discretization. The contribution compares two approaches that are designed to reduce the mesh 

influence: (I) the crack band model and (II) the nonlocal model. These localization limiters are applied to 

simulate three-point-bent beam with and without notch. The model of the beam is made with several variants 

of mesh discretization differing in finite element size and inclination. Performance of both localization 

limiters is discussed. 
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1. Introduction 

Behaviour of quasi-brittle materials is usually represented in FEM software by material models with 

strain-softening. When using such a model, after reaching the tensile strength, strain continues to increase 

while stress decreases. In consequence, crack localizes into a band of width of one finite element and 

computed results become dependent on mesh discretization. There are several approaches that try to avoid 

such an unwanted behaviour. The most known are the Crack band model (Bažant & Oh, 1983) and 

Nonlocal model (Jirásek, 1998). Both approaches should theoretically ensure correct energy dissipation 

during the crack propagation and therefore also similar load-deflection response of FEM models 

irrespectively of chosen discretization. 

Desired independency is unfortunately hard to achieve in reality, especially when the crack is inclined 

from the mesh direction. This contribution shows performance of both localization limiters on simulation 

of three-point-bending test with and without central notch using several variant of mesh discretization. 

2. Model of the Beam 

The approaches are compared on a model of the three-point-bent beam. The beam dimensions are 

following: span s = 400 mm, total length l = 1.1×s = 440 mm, depth and thickness are both  

D = t = 100 mm. If notch is present, its depth is 1/3 of beam depth D.  

Three element meshes differing in density of the discretization were generated for each beam variant 

(with and without the notch). The element size was chosen as 10, 5 and 2.5 mm, respectively. Another 

three element meshes for each beam variant were made to study effect of inclined mesh, and were 

inclined by angle of 30, 45 and 60 degrees. The element size for the inclined meshes was 5 mm. Some of 

the meshes are shown in Fig. 1. 

The loading was done via prescribed deformation at two nodes above the beam center. The two nodes 

were necessary to ensure symmetric boundary condition. The total loading force F was measured as sum 

of forces at the loaded nodes, deflection d was taken as an average of vertical movement of two nodes at 

the bottom surface at the midspan. 
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Fig. 1: Examples of straight and inclined meshes with and without notch. 

Material parameters were chosen to represent behaviour of concrete in tension: Young’s modulus 

E = 30 GPa, tensile strength ft = 2.5 MPa, Poisson`s ratio ν = 0.18, linear strain-softening represented by 

isotropic damage variable. Self weight was omitted in this study. Equivalent stress was defined according 

to Mazars (1984) 

  ̅   √∑ 〈  〉
  

    (1) 

where    are principle strains and brackets 〈 〉 returns positive part of the argument inside. FEM analyses 

were computed in open-source program Oofem (Patzák & Bittnar, 2001). 

3. Demonstration of Discretization Density Effect 

To demonstrate the influence of localization, the first study was performed using local constitutive law 

with constant value of the final strain εf = 0.004, which is the strain that corresponds to fully opened 

crack. Fig. 2 you can see that the response is different for the different finite element discretization 

density. Load-deflection diagrams obtained from unnotched (notched) beam simulations are shown in 

gray (black) color, respectively. Both peak loads and descending parts of the diagrams are different for 

different mesh densities. Demand for more efficient model is obvious.  

4. Crack Band Model 

The first tested remedy is the crack band model developed by Bažant & Oh (1983). The crack band 

model does not actually eliminate the localization; it just helps us get rid of the localization influence on 

the results. The crack still propagates through the thin band of one layer of finite elements. The main idea 

is to ensure the constant value of energy dissipated in the unit of the area. This constant value is called 

fracture energy Gf [N/m
2
] and it is understood as a material parameter. The energy dissipated in one finite 

element must be equal to the fracture energy multiplied by the area of the finite element. The final strain 

in the constitutive law is not constant anymore and it is dependent on the fracture energy and the element 

width. For the linear softening, it can be calculated as 

   ̅   
    

    
, (2) 

 
Fig. 2: Dependency of local material model with constant final strain. 
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Fig. 3: Crack band model applied on meshes differing in element size and inclination. 

where hb is the band width. When crack is aligned with mesh direction, the width can be taken as size of 

the finite elements. But the crack does not always propagate in the same direction as the finite elements 

are aligned. In such cases, the band width must be artificially estimated (Jirásek & Bauer, 2012). 

The crack band model was applied on the same three point bended beam with the same set of mesh 

geometries. In addition, the performance of the crack band model was verified on set of inclined mesh 

geometries. Fracture energy was chosen to correspond to constitutive law of the 10 mm element from 

Sec. 2; its value was 50 N/m
2
. The results are shown in Fig. 3, the left hand side shows load-deflection 

diagrams for various mesh densities, whereas the right hand side displays results on meshes with different 

inclination angle. 

Performance of the crack band model on aligned meshes is excellent; curves for different discretization 

densities almost coincide. Poorer results are obtained for inclined meshes, where calculation of the band 

width is not that simple. Peak load is not affected by the inclination at all. 

5. Nonlocal Model 

The nonlocal model does not allow the crack to localize into band of one element width. It enforces the 

crack to propagate through zone of constant width irrespectively of meshing. The constitutive law is not 

modified, it has constant final strain   . However, the nonlocal equivalent strain is used and it is 

computed as an average of equivalent strains using some weight function   . The weight function can be 

any function that decreases with increasing distance. Besides different type of weight functions, there are 

also nonlocal models that average other variable instead of equivalent strain, such as damage, stress, etc. 

In this contribution, nonlocal equivalent strain is considered; weight function was chosen bell shaped 

function according to 

   ( )  (   
   ⁄ ) , (3) 

where s is distance and R is range of the weight function. For any point outside of the range  

(s > R), the value of the weight function is considered as zero. The function needs to be normalized to 

ensure, that the sum of its values is equal to 1. The nonlocal equivalent strain is then calculated from 

  ̃( )  ∑   (  ) (̅  ) (4) 

where x is coordinate of the examined point and γi is coordinate of any point in the range of weight 

function 

The range R was chosen as 10 mm. The final strain in constitutive law in  ̃f = 0.002 was chosen to 

provide the response comparable with the crack band model results. We applied the nonlocal model on 

the same geometry as was done with the crack band model. The performance on the aligned meshes (left 

part of the Fig. 4) is worse than what we got with the crack band localization limiter. For inclined meshes, 

the results look more or less the same as those provided by the crack band model. For 60 degrees 

inclination angle, quite poor agreement is found. 
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Fig. 4: Nonlocal model applied on meshes differing in element size and inclination. 

 

Fig. 5: Crack patterns for Crack band (left) and Nonlocal model (right) for notched and unnotched beam 

with mesh inclined by 60 degrees. 

Besides the load-deflection curves, the crack path was compared as well. Fig. 5 displays damage variable 

at the end of the simulation. There are only shown central parts of the beams, the depth is not trimmed. 

Two figures in the right were computed using the nonlocal model, other two figures at the left by crack 

band model. Crack band allows the localization and the damaged band goes through only a few elements. 

The nonlocal model avoids such localization. In case of the crack band model and inclination angle  

60 degrees, the crack pattern is spuriously skewed along the mesh orientation. 

6. Conclusion 

Both approaches provide reduction of dependency of the results on the finite element size. When inclined 

mesh is used, independency of the response seems to be more efficiently provided by the nonlocal 

formulation, especially when considering the crack pattern. On the mesh with inclination angle of  

60 degrees, the crack spuriously propagates along the mesh orientation when using the crack band model. 
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