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Abstract: The divergence is one of the most important and dangerous phenomenon of aeroelastic post-

critical states occurring at a prismatic slender beam in a cross-flow. This phenomenon manifests by stable 

periodic hopping between two nearly constant limits perturbed by random noises. Experimental observation 

and numerical simulation motivates an idea to model this process as the effect of the stochastic resonance. 

Being observed and practically used in a number of disciplines in physics (optics, plasma physics, atd.) its 

mathematical basis follows in the most simple case from properties of the Duffing equation with negative 

linear part of the stiffness. The occurrence of this phenomenon depends on certain combinations of input 

parameters, which can be determined theoretically and verified experimentally in the wind tunnel. Parameter 

combinations leading to the stochastic resonance (or divergence) should be avoided in practice in order to 

eliminate any danger of the bridge deck collapse due to aeroelastic effects. 

Keywords:  Stochastic resonance, Interwell hopping, Non-linear vibration, Aeroelastic divergence, 

Post-critical states. 

1. Phenomenon of the Stochastic Resonance 

Stochastic resonance is a phenomenon, which has been surmised in physical chemistry in early forties, 

see e.g. Kramers (1940). Many years later several branches in theoretical and experimental physics 

identified this phenomenon and applied this one in optics and plasma physics, see e.g. Inchiosa & Bulsara 

(1996), or review paper Gammaitoni et al. (1998). Hundreds papers more have been published until now, 

including also a couple of monographs, for instance McDonnell et al. (2008). Authors outlined some 

basic properties of the stochastic resonance quite recently, Náprstek (2014). Stochastic resonance 

represents in principle a very stable interwell hopping of the non-linear oscillator of the Duffing type 

under suitable combination of the deterministic (harmonic) and white noise related random excitation. 

Many physical effects can be modeled using this approach. 

Let us assume the nonlinear mass-unity oscillator with one degree of freedom under additive excitation, 

which consists of harmonic and random components: 

  
 ̇    
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  (1) 

     - potential energy being introduced in a form corresponding with the Duffing equation: 

       
  

 

 
   

  

 
                         

          (2) 

     - Gaussian white noise of intensity     respecting conditions: 

                                       (3) 

                 - external harmonic force with frequency  . Amplitude    should be understood per 

unit mass. Symbols    and    have a usual meaning of the circular eigen-frequency and circular 

damping frequency of the associated linear system. The linear part of the       is negative making the 

system metastable in the origin, while the cubic part acts as stabilizing factor beyond a certain interval of 

displacement  . 
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Taking into account that random noise in Eq. (1) has an additive character, the appropriate Fokker - 

Planck (FP), e.g. Pugachev & Sinitsyn (1987), equation can be easily written out: 

                                        (4) 

 
         

  
   

         

  
 

 

  
                                       

    (5) 

together with boundary conditions: 

                                                          (6) 

Some illustrative numerical results have been outlined in Fig. 1. It presents numerical simulations using 

the basic system Eq. (1). In individual parts the influence of rising white noise intensity   , which acts 

together with a harmonic force onto the system, can be seen. For very low level of the noise the harmonic 

component is hardly able to overcome the inter-well barrier and therefore only seldom irregular jumps 

between stable points occur. In local regimes the system response is relatively small and nearly linear, see 

Fig. 1 - left (a). Optimal ratio of the noise intensity and the amplitude of the harmonic force results for its 

certain frequency in the system response containing a visible periodic part corresponding with the 

frequency of the external harmonic excitation component. The response is not harmonic and contains 

many higher harmonics. However the basic frequency of the interwell hopping is stable making possible 

to reconstruct the original harmonic component hidden in the background, see Fig. 1 - left (b). Fig. 1 - left 

(c) demonstrates the state of a large superiority of the noise. Increasing the noise level can counteract the 

aforementioned process and thereby the stochastic resonance effect vanishes. However, the useful 

harmonic component could be still detected when stiffness parameters (  
    ) and damping (  ) are 

adjusted appropriately with respect to the deterministic excitation component frequency  . 

General characteristics of the response can be obtained investigating the FP equation (5) together with 

conditions Eqs (6). Examining the right side of Eq. (5), it is obvious that stationary solution cannot exist 

due to time dependent coefficient   . This factor is given by deterministic excitation component. 

Otherwise the stationary solution exists and can be carried out for Hamiltonian systems using the 

Boltzmans formula, e.g. Cai & Lin (1988) or Pugachev & Sinitsyn (1987). A number of methods can be 

used to solve Eq. (1), however an evolution character should be kept at this case. Fig. 1 shows the 

sensitivity of the system. 

2. Example - Harmonically Excited Beam Under Influence of Turbulence Noise 

The response of a beam, loaded by the wind with turbulent component, known as the aeroelastic 

divergence, see e.g. Náprstek & Pospíšil (2012) and many others, initiated the idea to use the theory of 

stochastic resonance for the explanation of hopping of the beam in between two meta-stable positions, see 

e.g. Gammaitoni et al. (1998), McDonnell et al. (2008) or Náprstek (2014). This kind of the response has 

been observed during the wind tunnel measurement focused on the self-induced vibration with the large 

amplitudes in the non-linear range using the special experimental stand. It represents the working 

 

Fig. 1: Response of the system with combined excitation - white noise and harmonic (left). The 

spectral amplification of the system response due to stochastic resonance effect (right). 
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mechanism sensitive to the excitation by the wind. The stand and the experiments are described more in 

detail in the paper Král et al. (2013). 

The effect of the stochastic resonance has been demonstrated by means of numerical simulation on the 

special experimental stand mentioned above. It accommodates a sectional model of a slender prismatic 

beam tested in a cross-flow in a wind tunnel. As it can be seen in Fig. 2 - left, time histories for various 

levels of the noise component are adequate with those demonstrated in Fig. 1 - left. Influence of the noise 

intensity increase manifests itself from a local nearly linear effect running around one of two semi-stable 

system positions as far as complex nonlinear process passing through the domain of both semi-stable 

positions. This result is even more obvious regarding Fig. 2 - right presenting the response probability 

density for input noise intensities corresponding with the left picture. In particular the probability density 

shape changes from the local concentration rather of the Gaussian like curve until bimodal probability 

density being symmetrical and typical for Duffing oscillator with a high level white noise excitation and 

almost without any harmonic excitation component. 

3. Conclusions 

The phenomenon of the stochastic resonance has been introduced as a theoretical tool of aeroelastic 

divergence description. This way reveals to be adequate observing carefully experimental results obtained 

by comprehensive measurements in a wind channel. With respect to those, the divergence manifests 

phenomenologically as a periodical hopping between two quasi-static positions with weak random 

perturbation. This effect can emerge under a relevant combination of periodic (nearly harmonic vortex 

shading) and random (white noise type) additive excitation as it has been observed experimentally. 

Conditions of the theoretical stochastic resonance occurrence at the Duffing equation are qualitatively 

identical and therefore it has been adopted as an adequate theoretical model of the divergence 

phenomenon. The relevance of this model has been verified analytically by means of the Fokker-Plack 

equation as well as by numerical solution of corresponding Ito stochastic system. The paper describes 

also the numerical simulation of the experimental stand used for the aeroelastic testing of profiles, before 

it has been tested in the turbulent flow. It shows, that under certain "optimal" value of the parameters, the 

signal-to-noise ratio of the response increases and the resonant-like peak occurs in the amplitude spectra. 

This makes an optimistic perspective for the experimental analysis, which together with the analytical and 

numerical ones should continue to obtain better insight into the general tendencies when individual 

parameters of the system and the input signal are changed. 
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